Deep Learning Toolbox Model for GoogLeNet Network
                  Pretrained GoogLeNet network model for image classification
                
                  
              
                    16,7K Downloads
                    
                    
                  
                
                  Aktualisiert
                    15. Okt 2025
                  
                
              GoogLeNet is a pretrained model that has been trained on a subset of the ImageNet database which is used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). The model is trained on more than a million images, has 144 layers, and can classify images into 1000 object categories (e.g. keyboard, mouse, pencil, and many animals).
Opening the googlenet.mlpkginstall file from your operating system or from within MATLAB will initiate the installation process for the release you have. 
This mlpkginstall file is functional for R2017b and beyond. Use googlenet instead of imagePretrainedNetwork if using a release prior to R2024a.
Usage Example: 
% Access the trained model
[net, classes] = imagePretrainedNetwork("googlenet");
% See details of the architecture
net.Layers
% Read the image to classify
I = imread('peppers.png');
% Adjust size of the image
sz = net.Layers(1).InputSize
I = I(1:sz(1),1:sz(2),1:sz(3));
% Classify the image using GoogLeNet
scores = predict(net, single(I));
label = scores2label(scores, classes)
% Show the image and the classification results
figure
imshow(I)
text(10,20,char(label),'Color','white')
Kompatibilität der MATLAB-Version
              Erstellt mit
              R2017b
            
            
              Kompatibel mit R2017b bis R2026a
            
          Plattform-Kompatibilität
Windows macOS (Apple Silicon) macOS (Intel) LinuxKategorien
      Mehr zu Deep Learning Toolbox finden Sie in Help Center und MATLAB Answers
    
  Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
