Deep Learning Toolbox Model for VGG-16 Network
Pretrained VGG-16 network model for image classification
10,5K Downloads
Aktualisiert
11. Sep 2024
VGG-16 is a pretrained Convolutional Neural Network (CNN) that has been trained on approximately 1.2 million images from the ImageNet Dataset (http://image-net.org/index) by the Visual Geometry Group at University of Oxford (http://www.robots.ox.ac.uk/~vgg/research/very_deep/).
The model has 16 layers and can classify images into 1000 object categories (e.g. keyboard, mouse, coffee mug, pencil).
Opening the vgg16.mlpkginstall file from your operating system or from within MATLAB will initiate the installation process for the release you have.
This mlpkginstall file is functional for R2017a and beyond. Use vgg16 instead of imagePretrainedNetwork if using a release prior to R2024a.
Usage Example:
% Access the trained model
[net, classes] = imagePretrainedNetwork("vgg16");
% See details of the architecture
net.Layers
% Read the image to classify
I = imread('peppers.png');
% Adjust size of the image
sz = net.Layers(1).InputSize
I = I(1:sz(1),1:sz(2),1:sz(3));
% Classify the image using VGG-16
scores = predict(net, single(I));
label = scores2label(scores, classes)
% Show the image and the classification results
figure
imshow(I)
text(10,20,char(label),'Color','white')
Kompatibilität der MATLAB-Version
Erstellt mit
R2017a
Kompatibel mit R2017a bis R2024b
Plattform-Kompatibilität
Windows macOS (Apple Silicon) macOS (Intel) LinuxKategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und MATLAB Answers
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.