Test functions for global optimization algorithms

Version 1.5 (38,5 KB) von Rody Oldenhuis
Test functions for global optimization algorithms
8,9K Downloads
Aktualisiert 2. Mai 2020

This is a set of test functions which can be used to test the effectiveness of global optimization algorithms. Some are rather easy to optimize (rosenbrock, leon, ...), others next to impossible (crosslegtable, bukin6, ...).
All the test-functions are taken from either [1], [2] or [3] (see below). All functions may be called in two ways:

[dims, lb, ub, sol, fval_sol] = fun()

(e.g., no input arguments) This returns the number of dimensions of the function, the default lower and upper bounds, the solution vectors for all global minima and the corresponding function values. To calculate the function value for input X, use:

val = fun( [x1, x2, ..., xn] )

with the dimension [n] depending on the specific function [fun] (for most functions, n=2). Note the single vector argument--this is done in order to easily insert the function into a global optimizer that inserts a [N x n] matrix of trial vectors in these functions.

I also included a function to display most of the functions. This is called EZIMAGE, and can be called with a function handle argument:

ezimage(@himmelblau) (to plot the himmelblau function)
ezimage(@sinenvsin) (see screenshot)
...

or just as-is:

ezimage()

which lists all functions and waits for user input. This is meant to get a first impression of what the challenges are the test function has to offer.

FUTURE WORK:
- constrained single-objective functions
- (constrained ) multi-objective functions

sources:
[1] Mishra, Sudhanshu. "Some new test functions for global optimization and performance of repulsive particle swarm method". MPRA, 23rd august 2006. http://mpra.ub.uni-muenchen.de/2718/
[2] Z.K. Silagadze. "Finding two-dimensional peaks". 11th mar 2004. arXiv preprint: arXiv:physics/0402085v3
[3] W. Sun, Ya-X. Yuan. "Optimization theory and Methods. Nonlinear Programming". Springer verlag, 2006. ISBN-13:978-0-387-24975-9.

Zitieren als

Rody Oldenhuis (2024). Test functions for global optimization algorithms (https://github.com/rodyo/FEX-testfunctions/releases/tag/v1.5), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2009b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Global or Multiple Starting Point Search finden Sie in Help Center und MATLAB Answers
Quellenangaben

Inspiriert: Constrained Particle Swarm Optimization

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.5

See release notes for this release on GitHub: https://github.com/rodyo/FEX-testfunctions/releases/tag/v1.5

1.4.0.0

Description update
Fixed all bugs found by Jeffrey Larson (thanks!)

1.3.0.0

[linked to Github]

1.2.0.0

- Corrected bug in leon function (square -> cube)
- Contact info updated

1.1.0.0

- updated all functions to automate finding its dimensions/bounds
- cleaned up EZIMAGE() , and made it suitable for future extentions

1.0.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.