Explainable Neural Network Regression Model with SHAP

Version 1.0.1 (496 KB) von Mita
Radial Basis Function Neural Network training include 5-fold cross-validation and SHAP analysis for explainable model
282 Downloads
Aktualisiert 16. Dez 2024

Lizenz anzeigen

This MATLAB script implements an explainable neural network regression model using a Radial Basis Function Neural Network (RBFNN) to predict water flux in forward osmosis processes. The model utilizes operational parameters such as membrane area, feed and draw solution flow rates, and concentrations as input features for training. To enhance interpretability, SHapley Additive exPlanations (SHAP) are applied, allowing users to gain insights into the contribution of each parameter to the model's predictions. This tool provides a powerful solution for researchers and engineers looking to develop accurate and transparent regression models while leveraging the flexibility of RBFNNs for optimizing forward osmosis system performance.

Zitieren als

Mita (2025). Explainable Neural Network Regression Model with SHAP (https://de.mathworks.com/matlabcentral/fileexchange/174170-explainable-neural-network-regression-model-with-shap), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2024a
Kompatibel mit R2024a bis R2024b
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.1

The published script cannot run properly on the matlab version lower than R2024a

1.0.0