Fine-Tune BERT to Classify Text Data in MATLAB

Version 1.0 (155 KB) von Sohini Sarkar
This example shows how to fine-tune a pretrained BERT model for performing text classification.
21 Downloads
Aktualisiert 17. Apr 2024

Fine-Tune BERT to Classify Text Data in MATLAB®

Getting started

This example shows how to fine-tune a pretrained BERT model for performing text classification.

Overview

In this example, you modify a pretrained BERT model for text classification. First, add new layers for classification. Then, retrain the model to fine-tune it, using the original parameters as a starting point. It includes three steps:

  1. Preprocess text data and initialize BERT model
  2. Set up and train the network
  3. Test the model

This example shows the steps for fine-tuning BERT in detail. An alternative approach for document classification using BERT is to use trainBERTDocumentClassifier function.

Setup

Clone the repository into a local directory. Open the example script "FineTuning_BERT_for_Classification.mlx".

The example requires data to run. To download the data: :

Required Products

  • MATLAB (R2024a or later)
  • Text Analytics Toolbox™ (R2024a or later)
  • Deep Learning Toolbox™ (R2024a or later)

Contact

Sohini Sarkar, ssarkar@mathworks.com

License

The license is available in license.txt file in this GitHub repository.

Community Support

MATLAB Central

Copyright 2024, The MathWorks, Inc.

Zitieren als

Sohini Sarkar (2024). Fine-Tune BERT to Classify Text Data in MATLAB (https://github.com/matlab-deep-learning/fine-tune-BERT-classification/releases/tag/v1.0), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2024a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Tags Tags hinzufügen

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.