Detect Anomalies in Text Data Using Variational Autoencoder

Version 1.0 (135 KB) von Sohini Sarkar
This example shows how to detect out-of-distribution text data using a variational autoencoder (VAE).
35 Downloads
Aktualisiert 27. Mär 2024

Detect Anomalies in Text Data Using Variational Autoencoder (VAE) in MATLAB® Open in MATLAB Online

This example shows how to detect out-of-distribution text data using a variational autoencoder (VAE).

Overview

VAEs are a neural network architecture composed of two parts:

  • An encoder that encodes data in a lower-dimensional parameter space.
  • A decoder that reconstructs the input data by mapping the lower-dimensional representation back into the original space.

You can use a VAE to detect anomalies in your dataset. To do this, train a VAE on your data. Then, encode and decode a test data point. Compare the output of the decoder with the input data. If the input and output are similar, then the data is in-distribution. If the input and output are dissimilar, then the data is out-of-distribution, or anomalous.

This example includes three steps.

  1. Load and preprocess the text data.
  2. Set up and train the encoder and decoder networks.
  3. Use the VAE to detect anomalies in test data

Setup

Clone the repository in a local directory. If you would like to use this repository with MATLAB Online, clink Open in MATLAB Online

The main live script is AnomalyDetectionwithTextusingVAE.mlx. The other .m files are supporting functions for sampling the latent space, projecting and reshaping after sampling from latent space, and initializations of the project and reshape layer. You can either open the .mlx for demo or open the .prj file which will automatically open .mlx file.

Before running the file, get the data using the following steps:

Required Products

  • MATLAB (R2023a or later)
  • Text Analytics Toolbox™ (R2023a or later)
  • Deep Learning Toolbox™ (R2023a or later)

Contact

Sohini Sarkar, ssarkar@mathworks.com

License

The license is available in license.txt file in this GitHub repository.

Community Support

MATLAB Central

Copyright 2024, The MathWorks, Inc.

Zitieren als

Sohini Sarkar (2025). Detect Anomalies in Text Data Using Variational Autoencoder (https://github.com/matlab-deep-learning/anomaly-detection-with-text-variational-autoencoder/releases/tag/v1.0), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2024a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Tags Tags hinzufügen

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.