Predicting Beamforming Vectors Using LSTM Networks

This code trains an LSTM network on synthetic data to predict beamforming vectors, evaluating its performance based on simplified factors.
309 Downloads
Aktualisiert 16. Jun 2023

Lizenz anzeigen

This code utilizes an LSTM model to predict optimal beamforming vectors for a new user in a wireless network. The model is trained on synthetic data that includes user location, signal quality, channel state information (CSI), interference levels, and corresponding beamforming vectors for each antenna. Following training, the model generates predictions of beamforming vectors for a new user. These predicted vectors are then compared with actual vectors in terms of both magnitude and phase for each antenna. The code effectively demonstrates the application of LSTM networks in wireless scenarios to predict complex parameters, and it can be adapted to utilize real-world or measured datasets.

Zitieren als

Ardavan Rahimian (2024). Predicting Beamforming Vectors Using LSTM Networks (https://www.mathworks.com/matlabcentral/fileexchange/131229-predicting-beamforming-vectors-using-lstm-networks), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2023a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Tags Tags hinzufügen

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0