Efficient vectorization techniques for FEM computations

Applications of vectorization techniques described by multilinear algebra for efficient computations in the finite element method
48 Downloads
Aktualisiert 9. Jun 2025

Lizenz anzeigen

The code contains computational benchmarks related to the forthcoming paper
https://arxiv.org/abs/2404.16039

Zitieren als

Alexej Moskovka (2025). Efficient vectorization techniques for FEM computations (https://de.mathworks.com/matlabcentral/fileexchange/130824-efficient-vectorization-techniques-for-fem-computations), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2024a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

tensors_moskovka_rahman_valdman_vatne

tensors_moskovka_rahman_valdman_vatne/Rahman_Valdman_2013

tensors_moskovka_rahman_valdman_vatne/library_assemblies_nodal

tensors_moskovka_rahman_valdman_vatne/library_integration

tensors_moskovka_rahman_valdman_vatne/library_meshing

tensors_moskovka_rahman_valdman_vatne/library_meshing/algebra

tensors_moskovka_rahman_valdman_vatne/library_meshing/domains/2D

tensors_moskovka_rahman_valdman_vatne/library_meshing/domains/3D

tensors_moskovka_rahman_valdman_vatne/library_mix

tensors_moskovka_rahman_valdman_vatne/library_vectorization

tensors_moskovka_rahman_valdman_vatne/library_vectorization/new

tensors_moskovka_rahman_valdman_vatne/library_vectorization_implicitExpansion

tensors_moskovka_rahman_valdman_vatne/library_vectorization_implicitExpansion/new

tensors_moskovka_rahman_valdman_vatne/library_vectorization_pageOperations

tensors_moskovka_rahman_valdman_vatne/library_vectorization_pageOperations/new

tensors_moskovka_rahman_valdman_vatne/library_vectorization_pageOperations/page_application

tensors_moskovka_rahman_valdman_vatne/library_visualization

Version Veröffentlicht Versionshinweise
2.0.0

The code has been modified based on a review of the paper

1.0.1

The comments inside some functions have been modified.

1.0.0