Industrial IoT Sensor Data Prediction Using LSTM

This code generates synthetic sensor data, trains an LSTM network on this data, and then predicts future readings for industrial IoT.
399 Downloads
Aktualisiert 5. Jun 2023

Lizenz anzeigen

This code employs a long short-term memory (LSTM) network to predict time-series sensor data. It generates synthetic data for three sensors: temperature, humidity, and vibration. Each sensor's data is represented as a sinusoidal function with added noise, closely simulating the variability and randomness found in real-world sensor data. Once trained, the LSTM network can predict future sensor values, demonstrating the practical utility of LSTM networks in monitoring and predictive tasks within IoT systems.

Zitieren als

Ardavan Rahimian (2024). Industrial IoT Sensor Data Prediction Using LSTM (https://www.mathworks.com/matlabcentral/fileexchange/130604-industrial-iot-sensor-data-prediction-using-lstm), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2023a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Tags Tags hinzufügen

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0