Hamiltonian-Neural-Network

Hamiltonian Neural Network[1], a physics-informed neural network method, enables you to use AI under the law of conservation of energy.
130 Downloads
Aktualisiert 7 Mär 2023

Hamiltonian Neural Network

Hamiltonian Neural Network[1] enables you to use Neural Networks under the law of conservation of energy.

Hamiltonian Neural Network Loss is expressed with the following equation.

Requirements

MATLAB version should be R2022b and later (Tested in R2022b)

References

[1] Sam Greydanus, Misko Dzamba, Jason Yosinski, Hamiltonian Neural Network, arXiv:1906.01563v1 [cs.NE] 4 Jun 2019. 1906.01563v1.pdf (arxiv.org)

The data in 'trajectory_training.csv' was generated using Hamiltonian Neural Network described in the paper by Sam Greydanus, Misko Dzamba, Jason Yosinski , 2019, and released on GitHub under an Apache 2.0 license.

Demo_Hamiltonian_Spring_with_dlnetwork.m

Import data

rng(0);
data = table2array(readtable("trajectory_training.csv"));
ds = arrayDatastore(dlarray(data',"BC"));

Define Network

hiddenSize = 200;
inputSize = 2;
outputSize = 1;
net = [
    featureInputLayer(inputSize)
    fullyConnectedLayer(hiddenSize)
    tanhLayer()
    fullyConnectedLayer(hiddenSize)
    tanhLayer()
    fullyConnectedLayer(outputSize)];
% Create a dlnetwork object from the layer array.
net = dlnetwork(net);

Specify Training Options

numEpochs = 300;
miniBatchSize = 750;
executionEnvironment = "auto";
initialLearnRate = 0.001;
decayRate = 1e-4;

Create a minibatchque

mbq = minibatchqueue(ds, ...
    'MiniBatchSize',miniBatchSize, ...
    'MiniBatchFormat','BC', ...
    'OutputEnvironment',executionEnvironment);
averageGrad = [];
averageSqGrad = [];

accfun = dlaccelerate(@modelGradients);

figure
C = colororder;
lineLoss = animatedline('Color',C(2,:));
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on
set(gca, 'YScale', 'log');
hold off

Train model

start = tic;

iteration = 0;
for epoch = 1:numEpochs
    shuffle(mbq);
    while hasdata(mbq)
        iteration = iteration + 1;

        dlXT = next(mbq);
        dlX = dlXT(1:2,:);
        dlT = dlXT(3:4,:);

        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients function.
        [gradients,loss] = dlfeval(accfun,net,dlX,dlT);
        % Update learning rate.
        learningRate = initialLearnRate / (1+decayRate*iteration);

        % Update the network parameters using the adamupdate function.
        [net,averageGrad,averageSqGrad] = adamupdate(net,gradients,averageGrad, ...
            averageSqGrad,iteration,learningRate);
    end

    % Plot training progress.
    loss = double(gather(extractdata(loss)));
    addpoints(lineLoss,iteration, loss);

    drawnow
end

Test model

To make predictions with the Hamiltonian NN we need to solve the ODE system: dp/dt = -dH/dq, dq/dt = dH/dp

accOde = dlaccelerate(@predmodel);
t0 = dlarray(0,"CB");
x = dlarray([1,0],"BC");
dlfeval(accOde,t0,x,net);

% Since the original ode45 can't use dlarray we need to write an ODE
% function that wraps accOde by converting the inputs to dlarray, and
% extracting them again after accOde is applied. 
f = @(t,x) extractdata(accOde(dlarray(t,"CB"),dlarray(x,"CB"),net));

% Now solve with ode45
x = single([1,0]);
t_span = linspace(0,20,2000);
noise_std =0.1;
% Make predictions.
t_span = t_span.*(1 + .9*noise_std);
[~,dlqp] = ode45(f,t_span,x); 
qp = squeeze(double(dlqp));
qp = qp.';
figure,plot(qp(1,:),qp(2,:))
hold on
load qp_baseline.mat
plot(qp(1,:),qp(2,:))
hold off
legend(["Hamiltonian NN","Baseline"])
xlim([-1.1 1.1])
ylim([-1.1 1.1])

Supporting Functions

modelGradients Function

function [gradients,loss] = modelGradients(net,dlX,dlT)

% Make predictions with the initial conditions.
dlU = forward(net,dlX);
[dq,dp] = dlderivative(dlU,dlX);
loss_dq = l2loss(dq,dlT(1,:));
loss_dp = l2loss(dp,dlT(2,:));
loss = loss_dq + loss_dp;
gradients = dlgradient(loss,net.Learnables);
end

% predmodel Function
function dlT_pred = predmodel(t,dlX,net)
    dlU = forward(net,dlX);
    [dq,dp] = dlderivative(dlU,dlX);
    dlT_pred = [dq;dp];
end

% dlderivative Function
function [dq,dp] = dlderivative(F1,dlX)
dF1 = dlgradient(sum(F1,"all"),dlX);
dq = dF1(2,:);
dp = -dF1(1,:);
end

Copyright 2023 The MathWorks, Inc.

View Hamiltonian-Neural-Network on File Exchange

Zitieren als

Takuji Fukumoto (2024). Hamiltonian-Neural-Network (https://github.com/matlab-deep-learning/Hamiltonian-Neural-Network/releases/tag/v1.0.0), GitHub. Abgerufen .

Kompatibilität der MATLAB-Version
Erstellt mit R2022b
Kompatibel mit R2022b und späteren Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.