Attitude Heading Reference System using Kalman Filter

In this project, I have developed an AHRS with Linear Kalman Filter. A clear documentation on how I built it is given as a blog.
225 Downloads
Aktualisiert 14. Aug 2022

Lizenz anzeigen

This project will help you understand on how to intuitively develop a sensor fusion algorithm using linear kalman filter that estimates Roll, Pitch and Yaw of the vehicle with accelerometer, gyroscope and magnetometer as sensor inputs. The sensor data is used from a smartphone using MATLAB Support Package for Android Sensors. Realtime sensor fusion is also possible using this algorithm.
Check out the complete documentation:

Zitieren als

Farhan Ahamed (2026). Attitude Heading Reference System using Kalman Filter (https://de.mathworks.com/matlabcentral/fileexchange/116295-attitude-heading-reference-system-using-kalman-filter), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2021b
Kompatibel mit R2017b und späteren Versionen
Plattform-Kompatibilität
Windows macOS Linux
Quellenangaben

Inspiriert von: Smart Phone AHRS

Inspiriert: TRACKING A TARGET TRAJECTORY USING KALMAN FILTER

Version Veröffentlicht Versionshinweise
1.0.1

Updated documentation

1.0.0