Automatic Thresholding

Version 1.0.0.0 (1,1 KB) von Kanchi
Compute an optimal threshold for seperating the data into two classes.
6,7K Downloads
Aktualisiert 21. Mär 2006

Keine Lizenz

Compute an optimal threshold for seperating the data into two classes [1].

This algorithm can be summarized as follows. The histogram is initially segmented into two
parts using a a randonly-select starting threshold value (denoted as T(1)). Then, the data are classified into two classes (denoted as c1 and c2). Then, a new threshold value is computed as the average of the above two sample means. This process is repeated untill the threshold value
does not change any more.

The algorithm was implemented by Dhanesh Ramachandram [2]. However, the input data of her/his algorithm should lie in the range [0,255]. My code doesn't have this requirement.

Example
-------
t = func_threshold(T);

Reference: [1]. T. W. Ridler, S. Calvard, Picture thresholding using an iterative selection method,
IEEE Trans. System, Man and Cybernetics, SMC-8, pp. 630-632, 1978.
[2]. Dhanesh Ramachandram, Automatic Thresholding. Available online at: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3195&objectType=file

Jing Tian
Contact me : scuteejtian@hotmail.com
This program is written in Mar. 2006 during my postgraduate studying in Singapore.

Zitieren als

Kanchi (2024). Automatic Thresholding (https://www.mathworks.com/matlabcentral/fileexchange/10462-automatic-thresholding), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R13
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Quellenangaben

Inspiriert von: Automatic Thresholding

Inspiriert: Ridler-Calvard image thresholding, Autoscaleit

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0