Problem 4. Make a checkerboard matrix
Solution Stats
Problem Comments
-
38 Comments
This problem is far less trivial than it seems. Fun!
Cool.
Nice
Good one
All solutions with score 10 or 11 use the regexp cheat.
nice one
nice
I like this one! came to know about the invhilb function just because of this!
simple Tricky
This solution works on matlab but not here.
function a = checkerboard(n)
theta=pi/2:pi/2:n*pi/2;
a = (sin(theta)'*sin(theta))+cos(theta)'*cos(theta);
end
very good
This is a good problem!
Very nice! ;)
nice!
It is good problem!
good
Good!
Good
Good one
good one
I can not ...
nice problem
Nice
Puzzled me a bit but I'm proud of the final result even if i did 47 lines of code for this haha!
Nice
Nice - I can think of a few ways to do this. I dislike for loops in general so i try to minimise use, but ended up with a single reduced for loop and an eye commands. Enjoy!
function a = checkerboard(n)
a = ones(n);
a(2:2:n^2)=0;
end this code give me right answer in soft,but failed here
Good problem. Helps to understand the uses of logical operators.
The even part n=4 is tricky, Hint: google it
%% cherboard
function [board] = Chekerboard(n)
%% set bord matrix with zeros
board = zeros(n,n);
for j = 1:n
if mod(j,2)==0 %if zero row is even
for i =1:2:n
board(j,i) = 1;
end
else mod(j,2)==1 %if 1, row is odd
for t = 2:2:n
board(j,t) = 1;
end
end
end
this works and easy to understand~
function a = checkerboard(n)
if mod(n,2)==1
b = ones(n,n);
for i=2:2:n^2
b(i)=0;
end
a=b;
else
b = ones(n+1);
for i=2:2:(n+1)^2
b(i)=0;
end
a=b(1:n,1:n);
end
end
I just made
a(2:2:n,1:2:n) = 0;
a(1:2:n,2:2:n) = 0;
rather easy actually
What is the "size" of the solved problem? How is it calculated?
Awesome!
Nice problem :)
Fun problem with different solutions!
Nice problem, but tests 6 and 8 seem to make no sense. They use same input to the function, but expects different output, thus making it impossible to solve it.
Can someone please confirm?
@Adam, that test case was left incomplete, as there was some problem on my end as I was updating the problem.
I have now edited the test suite and have re-scored your solution as well.
Solution Comments
Show commentsProblem Recent Solvers15722
Suggested Problems
-
Project Euler: Problem 5, Smallest multiple
1326 Solvers
-
Project Euler: Problem 8, Find largest product in a large string of numbers
1086 Solvers
-
673 Solvers
-
Area of an equilateral triangle
6098 Solvers
-
1169 Solvers
More from this Author96
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!