Is expm accurate to compute transition probabilities for a continuous-time Markov chain?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have the following Q-matrix for a continuous time Markov chain and use expm to compute transition probabilities.
syms t positive
Q = [-2 1 1;
1 -1 0;
2 1 -3];
P(t) = expm(Q*t);
double(P(2))
Matlab gives
ans =
0.3797 0.4908 0.1295
0.3704 0.5092 0.1205
0.3794 0.4908 0.1298
My question is that I think ans(2,3) should be zero, becasue Q(2,3)=0. But Matlab shows that ans(2,3)=0.1205.
Thanks in advantage.
0 Kommentare
Antworten (1)
Yazan
am 7 Jul. 2021
expm(sig) computes the matrix exponential of sig according to:
[V,D] = eig(sig)
expm(sig) = V*diag(exp(diag(D)))/V
For your example:
Q = [-2 1 1;
1 -1 0;
2 1 -3];
P = expm(Q*2);
[V,D] = eig(Q*2);
P2 = V*diag(exp(diag(D)))/V;
% maximum difference
max(P2(:) - P(:))
0 Kommentare
Siehe auch
Kategorien
Mehr zu Markov Chain Models finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!