How to plot an Ellipse
309 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Dimitris Arapidis
am 8 Sep. 2013
Bearbeitet: Matt J
am 24 Nov. 2022
I want to plot an Ellipse. I have the verticles for the major axis: d1(0,0.8736) d2(85.8024,1.2157) (The coordinates are taken from another part of code so the ellipse must be on the first quadrant of the x-y axis) I also want to be able to change the eccentricity of the ellipse.
1 Kommentar
muhammad arfan
am 18 Jun. 2019
dears!!!
i have asigned to write a matlab code for 8 point to fit it in ellipse by using least square method..
i am new in using matlab and try my best but my points are not fit on ellipse. i use annealing method so that i have satisfied my teacher by my work. please chk my work and help me.
thanks
arfan khan
clc;
clear all;
close all;
r1 = rand(1);
r2 = [1+rand(1)]; % r2>r1
x0 = 0;
y0 = 0;
N = 8;
n= 100;
x1 = 1;
x2 = 2;
y1 = 1;
y2 = 2;
for i = 1:n
x = x1 +(x2-x1).*rand(N,1);
y = y1 +(y2-y1).*rand(N,1);
f = ((((x./r1).^2) +(y./r2).^2)-1).^2;
[m,l] = min(f);
z =.001* exp(10*(1-i/n));
v = z/2;
% disp('v');
% disp(v)
x1 = x(l)*v;
x2 = x(l)*v;
% disp('x1')
% disp(x1)
% disp('x2')
% disp(x2)
% ay = v./y(l);
% by = v./y(l);
% disp(v);
%
% % hold on;
disp('f');
disp(f);
end
% plot(f,'or')
plot(x,y, '*b');
x=((x(i)-x0)*cos(z)) - ((y(i)-y0)*sin(z))
y=(x(i)-x0)*sin(z)-(y(i)-y0)*cos(z)
xa(i)=rand(1)
x(i)= a+(b-a)*rand(1);
y(i)= rand(1);
for
m(i) = ((((x).^2)/a^2) + (((y).^2)/b^2)-1).^2
end
hold on;
Akzeptierte Antwort
Roger Stafford
am 8 Sep. 2013
Bearbeitet: Cris LaPierre
am 5 Apr. 2019
Let (x1,y1) and (x2,y2) be the coordinates of the two vertices of the ellipse's major axis, and let e be its eccentricity.
a = 1/2*sqrt((x2-x1)^2+(y2-y1)^2);
b = a*sqrt(1-e^2);
t = linspace(0,2*pi);
X = a*cos(t);
Y = b*sin(t);
w = atan2(y2-y1,x2-x1);
x = (x1+x2)/2 + X*cos(w) - Y*sin(w);
y = (y1+y2)/2 + X*sin(w) + Y*cos(w);
plot(x,y,'y-')
axis equal
11 Kommentare
Image Analyst
am 7 Jul. 2020
Here's a full demo:
% Define parameters.
fontSize = 15;
x1 = 1;
x2 = 20;
y1 = 2;
y2 = 8;
eccentricity = 0.85;
numPoints = 300; % Less for a coarser ellipse, more for a finer resolution.
% Make equations:
a = (1/2) * sqrt((x2 - x1) ^ 2 + (y2 - y1) ^ 2);
b = a * sqrt(1-eccentricity^2);
t = linspace(0, 2 * pi, numPoints); % Absolute angle parameter
X = a * cos(t);
Y = b * sin(t);
% Compute angles relative to (x1, y1).
angles = atan2(y2 - y1, x2 - x1);
x = (x1 + x2) / 2 + X * cos(angles) - Y * sin(angles);
y = (y1 + y2) / 2 + X * sin(angles) + Y * cos(angles);
% Plot the ellipse as a blue curve.
subplot(2, 1, 1);
plot(x,y,'b-', 'LineWidth', 2); % Plot ellipse
grid on;
axis equal
% Plot the two vertices with a red spot:
hold on;
plot(x1, y1, 'r.', 'MarkerSize', 25);
plot(x2, y2, 'r.', 'MarkerSize', 25);
caption = sprintf('Ellipse with vertices at (%.1f, %.1f) and (%.1f, %.1f)', x1, y1, x2, y2);
title(caption, 'FontSize', fontSize);
xlabel('x', 'FontSize', fontSize);
ylabel('y', 'FontSize', fontSize);
% Plot the x and y. x in blue and y in red.
subplot(2, 1, 2);
plot(t, x, 'b-', 'LineWidth', 2);
grid on;
hold on;
plot(t, y, 'r-', 'LineWidth', 2);
legend('x', 'y', 'Location', 'north');
title('x and y vs. t', 'FontSize', fontSize);
xlabel('t', 'FontSize', fontSize);
ylabel('x or y', 'FontSize', fontSize);
% Set up figure
g = gcf;
g.WindowState = 'maximized';
g.NumberTitle = 'off';
g.Name = 'Ellipse Demo by Roger Stafford and Image Analyst'

Maite Osaba
am 25 Aug. 2022
Bearbeitet: Maite Osaba
am 25 Aug. 2022
@Image Analyst I found this implementation really useful! Thanks! Do you think there is a way to plot this so the ellipse is filled with color?
Weitere Antworten (5)
Azzi Abdelmalek
am 8 Sep. 2013
Bearbeitet: Azzi Abdelmalek
am 12 Jun. 2015
a=5; % horizontal radius
b=10; % vertical radius
x0=0; % x0,y0 ellipse centre coordinates
y0=0;
t=-pi:0.01:pi;
x=x0+a*cos(t);
y=y0+b*sin(t);
plot(x,y)
3 Kommentare
Sandy M
am 27 Jul. 2019
Hi, I do my ellipse graph
A=10;
B=7.5;
X=-10:.1:10;
Y=(7.5/10)*(1-x^2)^(1/2)
z=-(7.5/10)*(1-x^2)^(1/2)
Plot(x,y,x,z)
Its ok but i need it in cm units cause if i change properties of figure and paper to cm i get deference’s about 3 or 5 mm How can I justify the unit
Kommi
am 24 Nov. 2022
For ellipse
>> clc
clear all
%length of major axis
a = input('please enter the length of major axis: ');
b = input('please enter the length of minor axis: ');
x1 = input('please input the x coordinate of the ellipse: ');
y1 = input('please enter the y coordinate of the ellipse: ');
t = -pi:0.01:pi;
x = x1+(a*cos(t));
y = y1+(b*sin(t));
plot(x,y);
0 Kommentare
Kate
am 24 Feb. 2014
how would you plot a ellipse with only knowing some co-ordinates on the curve and not knowing the y radius and x radius?
4 Kommentare
Devi Satya Cheerla
am 12 Jun. 2015
Bearbeitet: Walter Roberson
am 26 Aug. 2022
in the equation of ellipse X2/a2 + Y2/b2 = 1. knowing the points on ellipse, can find a and b. then enter the code below to mathematically compute y and to plot x,y.
code:
x=(0:.01:a); # x value is from 0 to 'a' and discrete with 0.01 scale#
i=1:(a*100+1); # i is to calculate y at every discrete value. it should be for 1 i.e first x value to the last x value.. as it does not have a zero, add 1#
clear y # to clear any previous y value#
for i=1:(a*100+1)
y(i)=(b^2*(1-(x(i)^2)/a^2))^.5; #from the ellipse equation y=sqrt(b2(1-(x2/a2))#
end
plot(x,y)
hold on
plot(x,-y)
hold on
plot(-x,y)
hold on
plot(-x,-y)
Sandy M
am 27 Jul. 2019
hi why u product the nmber with 100?
and, if i want the graph with cm units, what i do? cause i change garaph and paper properties but i still defreces about 4 mm when i prented it
Omar Maaroof
am 13 Mai 2019
you can use
Ellipse2d
1 Kommentar
Walter Roberson
am 13 Mai 2019
MATLAB does not offer Ellipse2d plotting directly. Instead, the Symbolic Toolbox's engine, MuPAD, offers plot::Ellipse2d https://www.mathworks.com/help/symbolic/mupad_ref/plot-ellipse2d.html which can only be used from within a MuPAD notebook . R2018b was intended to be the last release that included the MuPAD notebook, but it was carried on to R2019a as well.
Matt J
am 24 Nov. 2022
Bearbeitet: Matt J
am 24 Nov. 2022
Using this FEX download,
[x1,y1,x2,y2, e]=deal(1,2,20,8 ,0.85); %hypothetical input
a = 1/2*sqrt((x2-x1)^2+(y2-y1)^2);
b = a*sqrt(1-e^2);
center=[x1+x2,y1+y2]/2;
theta=atan2d(y2-y1,x2-x1); %rotation angle
obj=ellipticalFit.groundtruth([], center,[a,b], theta);
plot(obj); hold on;
plot([x1,x2],[y1,y2],'xk'); hold off;
axis padded

0 Kommentare
Siehe auch
Kategorien
Mehr zu Number Theory finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!