Code's optimization and speeding up (Legendre's polynomials and functions)
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Julián Francisco
am 31 Mai 2011
Kommentiert: sonakshi sarkar
am 8 Apr. 2014
Hi. I would like to improve this function to reduce the run time and optimize it.
function [Pl,Plm] = funlegendre(gamma)
Plm = zeros(70,71);
Pl = zeros(70,1);
P0 = 1;
Pl(1) = gamma;
Plm(1,1) = sqrt(1-gamma^2);
for L=2:70
for M=0:L
if(M==0)
if (L==2)
Pl(L) = ((2*L-1)*gamma*Pl(L-1)-(L-1)*P0)/L;
else
Pl(l) = ((2*l-1)*gamma*Pl(l-1)-(l-1)*Pl(l-2))/l;
end
elseif(M<L)
if(L==2)
if(M==1)
Plm(L,M) = (2*L-1)*Plm(1,1)*Pl(L-1);
else
Plm(L,M) = (2*M-1)*Plm(1,1)*Plm(L-1,m-1);
end
else
if(M==1)
Plm(L,M) = Plm(L-2,m) + (2*L-1)*Plm(1,1)*Pl(L-1);
else
Plm(L,M) = Plm(L-2,M) + (2*L-1)*Plm(1,1)*Plm(L-1,M-1);
end
end
elseif(M==L)
Plm(L,M) = (2*L-1)*Plm(1,1)*Plm(L-1,L-1);
else
Plm(L,M) = 0;
end
end
end
Pl = sparse(Pl);
Plm = sparse(Plm);
end
1 Kommentar
Walter Roberson
am 31 Mai 2011
Do you have the symbolic toolbox?
I am not sure what your code is doing, but it appears to be using the recursion relationship to form the legendre matrix. As such I get the impression that it might perhaps be what is implemented by http://www.mathworks.com/help/techdoc/ref/legendre.html ?
Akzeptierte Antwort
Jan
am 1 Jun. 2011
I've simplified the loop contents by moving all repeated calculations outside. Instead of checking inside the loop for M==0, M<L, M==L (there is not possible ELSE case!) is not necessary, if the M==0 case is move before the M-loop and the M==L case behind the loop. Integer indices are helpful also:
function [Pl, Plm] = funlegendreJan(gamma)
i1 = uint8(1);
i2 = uint8(2);
Plm = zeros(70,71);
Pl = zeros(70,1);
P0 = 1;
Pl(1) = gamma;
Plm(1,1) = sqrt(1 - gamma * gamma);
Plm11 = Plm(1, 1);
% L == 2:
Pl(2) = (3*gamma*Pl(1) - P0) * 0.5;
Plm(2, 1) = 3 * Plm11 * Pl(1);
Plm(2, 2) = 3 * Plm11 * Plm11;
% L > 2:
for L = 3:70
L1 = L - 1;
L2 = L - 2;
iL = uint8(L);
iL1 = uint8(L1);
iL2 = uint8(L2);
Pl(iL) = ((L + L1) * gamma * Pl(iL1) - L1 * Pl(iL2)) / L;
C = (L + L1) * Plm11;
Plm(iL, i1) = Plm(iL2, i1) + C * Pl(iL1);
for iM = i2:iL1
Plm(iL, iM) = Plm(iL2, iM) + C * Plm(iL1, iM - i1);
end
Plm(iL, iL) = C * Plm(iL1, iL1);
end
%Pl = sparse(Pl);
%Plm = sparse(Plm);
You did not tell us in your former thread, that Pl and Plm are sparse. This is not helpful afaics: Pl is full at all and Plm is small and >50% full. Therefore SPARSE matrices will waste computing time only.
The above version is 58% faster than the original. The non-sparse arrays will accelerate the rest of the simulation also.
1 Kommentar
sonakshi sarkar
am 8 Apr. 2014
Hello sir, I am doing M TECH and am doing my project on image steganography and I have chosen my topic on encryption using polynomial function... Sir can i use this code as the key of the encryption code???
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!