How I can specify more parameters to GA in order to speed up my code execution. with the help of (optimoptions function of ga).. opts = optimoptions(@ga,
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
%% Genetic Algorithm
FT=@(x)-Genetic_A(x);
A = []; % No other constraints
b = [];
Aeq = [];
beq = [];
lb = zeros(1,n);
ub = ones(1,n);
[x,fval] = ga(FT,n,A,b,Aeq,beq,lb,ub);
C_ga = -fval;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function C_ga = Genetic_A(x)
global G Pn Pt F H %G,F,H Matrices and Pn,Pt scalar
theta = (2*pi)*(x); %Reflecting Angle IRS, where x is a vector of size 1xn
Phi = diag(exp(1i*theta)); %phase shift Matrix for IRS, % Set Amp = 1
HT = H+F*Phi*G; %Channel Matrix
W = pinv(HT); %Precoding Matrix
W_bar = W./vecnorm(W,2,1); %Normalized
D_Matrix = HT*W_bar; %Diagonal Matrix
D_Square = (abs(diag(D_Matrix))').^2; % Channel gains
%% Water_filling
P = waterfill(Pt,Pn./D_Square);
R = P.*D_Square/Pn;
C_ga = sum(log2(1+R)); %Capacity
1 Kommentar
Antworten (1)
Abdolkarim Mohammadi
am 3 Jun. 2021
Indeed vectorization helps a lot for non-simulation objective functions. You should use the UseVectorized option.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Genetic Algorithm finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!