How can I go back and resolve failed attempts?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi everyone, so I have the following code:
clc;
clear;
% Import data
% PD: probability of default
% CM: covariance matrix
% DT: default threshold
PD = xlsread('Data_CIMDO.xlsx','PD');
CM = xlsread('Data_CIMDO.xlsx','COV');
DT = xlsread('Data_CIMDO.xlsx','DT');
Original_PD = PD; %Store original PD
LM_rows = 11; %Expected LM rows
LM_columns = length(PD) %Expected LM columns
LM_FINAL = zeros(LM_rows,LM_columns); %Dimensions of LM_FINAL
for i = 1:length(PD)
PD = Original_PD(:,i);
options = optimset('Display','iter');
x0 = rand(size(PD,1)+1,1);
[LM,fval,exitflag] = fsolve(@(x)ConstLM(x,PD,CM,DT), x0, options);
LM_FINAL(:,i) = LM;
end
Now since the code depends on the initial value (x0) when solving for LM, after one run of the code there are many unsolved values for LM as the initial x0 was incorrectly guessed. So how can I adjust the code such that it keeps running until all LM's have been solved?
Thanks.
0 Kommentare
Akzeptierte Antwort
Jan
am 6 Aug. 2013
Bearbeitet: Jan
am 6 Aug. 2013
...
for k = 1:100
[LM, fval, exitflag] = fsolve(@(x)ConstLM(x,PD,CM,DT), x0, options);
if exitflag == 1
break;
end
end
if exitflag ~= 1
warning('FSOLVE did not find a solution.');
end
...
I'd prefer such a loop with a maximum loop counter to guarantee that the function stops in finite time.
2 Kommentare
Walter Roberson
am 7 Aug. 2013
You can put the
x0 = rand(size(PD,1)+1,1);
before the fsolve() call to use a new starting point each time.
Weitere Antworten (0)
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!