How to solve ODE system numerically
24 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello. I am trying to get a solution from this system:
a1 = 0.7;
a2 = 0.4;
b1 = 0.06;
b2 = 0.08;
c1 = 8787168;
c2 = 8111232;
syms x(t) y(t);
ode1 = diff(x) == (-a1)*x + b1*(c1-x)*y;
ode2 = diff(y) == (-a2)*y + b2*(c2-y)*x;
odes = [ode1,ode2]
cond1 = x(0) == 15000;
cond2 = y(0) == 17000;
conds = [cond1,cond2]
dsolve(odes,conds);
But Matlab cannot come to an explicit solution. How can I produce a numerical one?
Thank you.
0 Kommentare
Akzeptierte Antwort
Jan
am 6 Mai 2021
Bearbeitet: Jan
am 6 Mai 2021
a1 = 0.7;
a2 = 0.4;
b1 = 0.06;
b2 = 0.08;
c1 = 8787168;
c2 = 8111232;
y0 = [15000, 17000];
tSpan = [0, 0.0001]; % The values explode for higher t
[Y, T] = ode45(@(t,y) fcn(t, y, a1, a2, b1, b2, c1, c2), tSpan, y0);
plot(T, Y)
function dy = fcn(t, y, a1, a2, b1, b2, c1, c2)
dy = [-a1 * y(1) + b1 * (c1 - y(1)) * y(2); ...
-a2 * y(2) + b2 * (c2 - y(2)) * y(1)];
end
Weitere Antworten (1)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
