Determinant of integer matrices

2 Ansichten (letzte 30 Tage)
Rudolf Fruehwirth
Rudolf Fruehwirth am 23 Apr. 2021
Kommentiert: Matt J am 23 Apr. 2021
Is there a version of the det function in R2020a that alway gives determinant 0 for small singular integer matrices?
  4 Kommentare
Rudolf Fruehwirth
Rudolf Fruehwirth am 23 Apr. 2021
And it should work without prior knowledge whether the entries are integer or not. Probably asking too much...
Matt J
Matt J am 23 Apr. 2021
And it should work without prior knowledge whether the entries are integer or not. Probably asking too much...
No, one of hte answers below meets that requirement.

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Matt J
Matt J am 23 Apr. 2021
Bearbeitet: Matt J am 23 Apr. 2021
Since you know A is an integer matrix, can't you just do,
d=round(det(A));
  3 Kommentare
Matt J
Matt J am 23 Apr. 2021
OK. Well, maybe the A(i,j) are supposed to be "small" in mangitude as well...
John D'Errico
John D'Errico am 23 Apr. 2021
A = randi(3,29,30);
A(end+1,:) = round(rand(1,29)*2-1)*A
A = 30×30
2 3 2 3 2 1 1 2 2 2 1 1 1 3 3 2 3 2 1 3 3 1 2 2 1 1 1 3 3 2 1 3 3 2 2 3 1 1 2 1 1 2 3 3 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 2 3 1 1 1 3 3 1 1 1 2 2 1 1 3 2 3 2 1 3 3 2 1 1 2 3 1 2 3 3 1 2 1 2 3 3 1 1 1 1 1 1 1 1 2 2 2 1 2 3 3 1 2 2 1 2 3 1 2 3 2 2 1 1 1 3 1 2 1 2 1 2 1 2 2 1 3 2 3 1 3 3 3 3 2 2 3 3 1 1 3 1 3 1 3 1 1 1 2 2 2 2 1 1 3 1 2 2 3 3 1 2 2 1 1 1 1 1 3 3 1 1 3 3 3 3 1 1 1 1 3 1 3 1 1 3 2 1 3 1 3 2 3 2 1 2 1 3 3 3 2 3 3 3 1 3 1 1 1 3 2 3 2 3 3 3 1 3 1 3 2 2 1 3 3 1 3 2 3 2 3 3 3 3 1 2 2 1 3 1 2 3 3 2 1 1 1 3 1 2 3 3 3 3 1 3 3 2 1 3 2 1 2 2 3 1 1 3 2 3 1 2 3 3 1 3 1 1 3 1 2 1 2 3 2 2 3 1 2
rank(A)
ans = 29
det(A)
ans = 0.5894
round(det(A))
ans = 1
Ok, I guess it works, some of the time. But not this one.
If the matrix is truly tiny, well yes.
A = magic(4)
A = 4×4
16 2 3 13 5 11 10 8 9 7 6 12 4 14 15 1
rank(A)
ans = 3
det(A)
ans = 5.1337e-13
round(det(A))
ans = 0
But you really cannot trust that rounding the determinant will work unless things are truly tiny.

Melden Sie sich an, um zu kommentieren.


Matt J
Matt J am 23 Apr. 2021
Bearbeitet: Matt J am 23 Apr. 2021
This might work,
A = randi(10000,[9,10]);
A(end+1,:) = randi(10,[1,9])*A;
determinant=double(det(sym(A)))
determinant = 0

Kategorien

Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by