Remaining Usefull Time - Predict RUL not working on ThingSpeak

1 Ansicht (letzte 30 Tage)
Aniket Manjare
Aniket Manjare am 18 Apr. 2021
Bearbeitet: ricardo arias am 30 Sep. 2021
I can succesfulkly run the code on Matlab but ,it shows error while running on ThingSpeak.
I really dont understan whats wrong, can you help me
error i am getting on Thingspeak Matlab Analysis
Warning: While loading an object of class 'linearDegradationModel':
Unrecognized field name "AlphaLevel".
> In MATLABAnalysis>getValues (line 50)
In MATLABAnalysis (line 34)
Error using rulModel/predictRUL (line 269)
Operands to the logical and (&&) and or (||) operators must be convertible to logical scalar values.
Error in MATLABAnalysis>getValues (line 62)
[estTTS, CITTS, pdfTTS] = predictRUL(T.mdl{failureMode},[-NaN healthIndicator],threshold);
Error in MATLABAnalysis (line 34)
[estTTS,healthIndicator,threshold,EmailAlertFlag] = getValues(features, out,dropBoxAccessToken, IFTTTURL, secondChID,thresholdTTS,labels,secondReadAPIKey) %Get the others values to be written on
second channel
  3 Kommentare
Aniket Manjare
Aniket Manjare am 21 Apr. 2021
Sure,
Well My project is Condition based predictive Maintenece of Motor by Vibration signal Analysis tecniques. our aim is to real time fault identification and predict the threshold before that need to be taken action by maintenece team.
function [estTTS,healthIndicator,threshold,EmailAlertFlag] = getValues(features, out,dropBoxAccessToken, IFTTTURL, secondChID,thresholdTTS,labels,readKey)
if(out == 0 || out == 1) %Don't need Predictive Maintenance during normal operation
estTTS = NaN;
healthIndicator = NaN;
threshold = NaN;
else
rawdata = downloadFromDropbox(dropBoxAccessToken,'Fan TTS Model.mat');
f = fopen('Fan TTS Model.mat','w');
fwrite(f,rawdata);
fclose(f);
T = load('Fan TTS Model.mat');
failureMode = out - 1 ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 to 0 then dutct block work
if(out ==2)
failureMode = 2;
else
failureMode = out - 1;
end
if(length(T.selectedFeatures{failureMode})==1)
healthIndicator = table2array(features(:,T.selectedFeatures{failureMode}));
threshold = T.threshold{failureMode};
[estTTS, CITTS, pdfTTS] = predictRUL(T.mdl{failureMode},[-NaN healthIndicator],threshold);
estTTS = estTTS*T.conversion{failureMode};
CITTS = CITTS*T.conversion{failureMode};
pdfTTS.TTS = pdfTTS.RUL*T.conversion{failureMode};
else
selectedFeatures = features(:,T.selectedFeatures{failureMode});
healthIndicator = (selectedFeatures{:,:} - T.meanTrain{failureMode}) ./ T.sdTrain{failureMode} * T.pcaCoeff{failureMode}(:, 1);
threshold = T.threshold{failureMode};
[estTTS, CITTS, pdfTTS] = predictRUL(T.mdl{failureMode},[-NaN healthIndicator],threshold);
estTTS = estTTS*T.conversion{failureMode};
CITTS = CITTS*T.conversion{failureMode};
pdfTTS.TTS = pdfTTS.RUL*T.conversion{failureMode};
end
end
end
ricardo arias
ricardo arias am 30 Sep. 2021
Bearbeitet: ricardo arias am 30 Sep. 2021
Can I use your code to predict the RUL with a file like this:
Only for VelB2 (Velocity in Bearing 2, in in/s). Threshold 0.351 in/s.
Could you help me with this??
Thanks

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Communitys

Weitere Antworten in  ThingSpeak Community

Kategorien

Mehr zu Food Sciences finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by