NaN values in timetable - how to calculate Nash–Sutcliffe model efficiency coefficient?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Elizabeth Lees
am 24 Mär. 2021
Bearbeitet: Elizabeth Lees
am 27 Mär. 2021
I would like the calculate the Nash–Sutcliffe model efficiency coefficient between various variables in a dataset. However a number of rows do contain missing data so I would like to exclue them from the calculate too. Is there a function that will allow this in matlab?
1 Kommentar
Jan
am 24 Mär. 2021
So the actual problem is how to remove rows with missing data? Then please post an example, which shows, how "missing" data are represented.
Akzeptierte Antwort
Star Strider
am 24 Mär. 2021
If the ‘missing’ data are NaN entries, this works:
data = rand(10,3); % Create Array
data(randi(30,1,5)) = NaN; % Create Missing Data
rowidx = ~any(isnan(data),2); % Rows Without ‘NaN’ Entries
data_new = data(rowidx,:); % Matrix With No ‘NaN’ Values
If the missing entries are in a cell array with empty cells, this works:
data = num2cell(rand(10,3)); % Create Cell Array
data(randi(30,1,5)) = {[]}; % Create Missing Data
rowidx = ~any(cellfun(@isempty,data),2); % Rows Without Empty Cells
data_new = data(rowidx,:); % Matrix With No Empty Cells
.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!