how to develop n order matrix?

7 Ansichten (letzte 30 Tage)
Jasneet Singh
Jasneet Singh am 19 Mär. 2021
Kommentiert: Jan am 22 Mär. 2021
i wish to make a matrix of nth order fromm K=[2000,-1000,0,0;-1000,2000,-1000,0;0,-1000,2000,-1000;0,0,-1000,1000; so on to nth order]
can anyone please help me with this ...
  3 Kommentare
Jasneet Singh
Jasneet Singh am 19 Mär. 2021
Bearbeitet: Jan am 19 Mär. 2021
its because last element is not hinged or fixed. so, there is only 1 force=1000 acting on it.
Walter Roberson
Walter Roberson am 19 Mär. 2021
K=[2000,-1000,0,0;-1000,2000,-1000,0;0,-1000,2000,-1000;0,0,-1000,1000]
K = 4×4
2000 -1000 0 0 -1000 2000 -1000 0 0 -1000 2000 -1000 0 0 -1000 1000

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Jan
Jan am 19 Mär. 2021
Bearbeitet: Jan am 19 Mär. 2021
With some guessing: You want a tridiagonal matrix with the right bottom element changed. Then:
n = 4;
K = diag(repmat(2000, 1, n)) + ...
diag(repmat(-1000, 1, n-1), 1) + ...
diag(repmat(-1000, 1, n-1), -1)
or
K = zeros(n, n);
nn = n * n;
n1 = n + 1;
K( 1:n1:nn) = 2000;
K(n1:n1:nn) = -1000;
K( 2:n1:nn-n) = -1000;
or
K = toeplitz([2000, -1000, zeros(1, n - 2)])
or
K = full(gallery('tridiag', n, -1000, 2000, -1000))
or
K = conv2(eye(n), [-1000, 2000, -1000], 'same')
any finally:
K(n, n) = 1000;
Or directly:
K = diag([repmat(2000, 1, n - 1), 1000]) + ... % Last element adjusted
diag(repmat(-1000, 1, n - 1), 1) + ...
diag(repmat(-1000, 1, n - 1), -1)
  7 Kommentare
Jasneet Singh
Jasneet Singh am 22 Mär. 2021
specifically for x w.r.t omega..
Jan
Jan am 22 Mär. 2021
This is a new question. Please post it as a new thread.

Melden Sie sich an, um zu kommentieren.


Walter Roberson
Walter Roberson am 19 Mär. 2021
n = 7;
MD = 2000*ones(1,n);
SD = -1000*ones(1,n-1);
K = diag(MD) + diag(SD,1) + diag(SD,-1)
K = 7×7
2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000
Or:
n = 7;
K = zeros(n,7);
K(1:n+1:end) = 2000;
K(2:n+1:end) = -1000;
K(n+1:n+1:end) = -1000;
K
K = 7×7
2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000 -1000 0 0 0 0 0 -1000 2000

Kategorien

Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by