Newton's method for two variable functions
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
sanyer
am 13 Feb. 2021
Kommentiert: sanyer
am 13 Feb. 2021
I have a problem in which I'm supposed to solve a system using Newton's method, but my function gives the same x and y as an output as I give to it as an input. How do I fix this?
function [x, y] = newton3(x,y)
for N = 1:30
D = inv([4*x^3-2*y^5 4*y^3-10*x*y^4; 6*x^5+2*x 4*y^3]);
f = x^4+y^4-2*x*y^5 ;
g = x^6+x^2+y^4-4 ;
z = [x y]' ;
z = z - D*[f g]' ;
x = z(1)
y = z(2)
end
end
0 Kommentare
Akzeptierte Antwort
Alan Stevens
am 13 Feb. 2021
Bearbeitet: Alan Stevens
am 13 Feb. 2021
It depends on your initial guesses. Some work, some don't (not unusual for Newton's method!): Also, better practice to set D to be the Jacobian, rather than its inverse, then use backslash division in the iteration see below:
x = 2; y = 2;
[x,y] = newton3(x,y);
disp([x y])
disp([x^4+y^4-2*x*y^5 x^6+x^2+y^4-4 ])
function [x, y] = newton3(x,y)
for N = 1:30
D = [4*x^3-2*y^5 4*y^3-10*x*y^4; 6*x^5+2*x 4*y^3]; %%%%%%%
f = x^4+y^4-2*x*y^5 ;
g = x^6+x^2+y^4-4 ;
z = [x y]' ;
z = z - D\[f g]' ; %%%%%%%%
x = z(1);
y = z(2);
end
end
5 Kommentare
Alan Stevens
am 13 Feb. 2021
Also, to define the functions you need
f = @(x,y) x^4 ...etc.
and you will need to define functions for dfdx, dfdy etc. if you are not using the Symbolic toolbox.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!