How to extract objects from a colored image and save them as separate images for future use?

5 Ansichten (letzte 30 Tage)
I have an image that contains numerous rice seeds laid on a coloured background and I want to separate the seed pixels from the image such that the i have the image of each rice seed saved as a separate picture. The reason i want to do that is that i want to extract features from each rice seed picture later to train a neural network to be able to identify to which variety the seed belongs to. The picture is attached, it isn't ideal but it is what i have to get started on developing an algo.

Akzeptierte Antwort

Image Analyst
Image Analyst am 22 Dez. 2020
Alright, here's the code. Accept the answer if it does what you need:
% Demo by Image Analyst, December, 2020.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clearvars;
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 16;
fprintf('Beginning to run %s.m ...\n', mfilename);
%-----------------------------------------------------------------------------------------------------------------------------------
% Read in image.
folder = [];
baseFileName = 'rice green background.jpg';
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
% The file doesn't exist -- didn't find it there in that folder.
% Check the entire search path (other folders) for the file by stripping off the folder.
fullFileNameOnSearchPath = baseFileName; % No path this time.
if ~exist(fullFileNameOnSearchPath, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
rgbImage = imread(fullFileName);
[rows, columns, numberOfColorChannels] = size(rgbImage)
% Display the test image full size.
subplot(1, 2, 1);
imshow(rgbImage, []);
axis('on', 'image');
caption = sprintf('Original Image : "%s"', baseFileName);
title(caption, 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
% Set up figure properties:
% Enlarge figure to full screen.
hFig1 = gcf;
hFig1.Units = 'Normalized';
hFig1.WindowState = 'maximized';
% Get rid of tool bar and pulldown menus that are along top of figure.
% set(gcf, 'Toolbar', 'none', 'Menu', 'none');
% Give a name to the title bar.
hFig1.Name = 'Demo by Image Analyst';
% Mask to find the rice.
[riceMask, maskedRGBImage] = createMask(rgbImage);
% Get rid of blobs less than 500 in size.
riceMask = bwareaopen(riceMask, 500);
% Display the test image full size.
subplot(1, 2, 2);
imshow(riceMask, []);
axis('on', 'image');
caption = sprintf('Mask Image : "%s"', baseFileName);
title(caption, 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
props = regionprops(riceMask, 'BoundingBox', 'Area')
allAreas = sort([props.Area])
numRows = ceil(sqrt(length(props)));
hFig = figure;
hFig.WindowState = 'maximized'
for k = 1 : length(props)
thisBox = props(k).BoundingBox;
croppedImage = imcrop(rgbImage, thisBox);
subplot(numRows, numRows, k);
imshow(croppedImage);
caption = sprintf('Blob #%d area = %d', k, props(k).Area);
title(caption, 'FontSize', 8);
drawnow;
end
fprintf('Done running %s.m ...\n', mfilename);
function [BW,maskedRGBImage] = createMask(RGB)
%createMask Threshold RGB image using auto-generated code from colorThresholder app.
% [BW,MASKEDRGBIMAGE] = createMask(RGB) thresholds image RGB using
% auto-generated code from the colorThresholder app. The colorspace and
% range for each channel of the colorspace were set within the app. The
% segmentation mask is returned in BW, and a composite of the mask and
% original RGB images is returned in maskedRGBImage.
% Auto-generated by colorThresholder app on 22-Dec-2020
%------------------------------------------------------
% Convert RGB image to chosen color space
I = rgb2hsv(RGB);
% Define thresholds for channel 1 based on histogram settings
channel1Min = 0.852;
channel1Max = 0.220;
% Define thresholds for channel 2 based on histogram settings
channel2Min = 0.431;
channel2Max = 1.000;
% Define thresholds for channel 3 based on histogram settings
channel3Min = 0.533;
channel3Max = 1.000;
% Create mask based on chosen histogram thresholds
sliderBW = ( (I(:,:,1) >= channel1Min) | (I(:,:,1) <= channel1Max) ) & ...
(I(:,:,2) >= channel2Min ) & (I(:,:,2) <= channel2Max) & ...
(I(:,:,3) >= channel3Min ) & (I(:,:,3) <= channel3Max);
BW = sliderBW;
% Initialize output masked image based on input image.
maskedRGBImage = RGB;
% Set background pixels where BW is false to zero.
maskedRGBImage(repmat(~BW,[1 1 3])) = 0;
end

Weitere Antworten (1)

Image Analyst
Image Analyst am 22 Dez. 2020
Very easy. Just use the Color threshold on the apps tab of the tool ribbon to make a mask for the rice color. Then call regionprops() to get the bounding boxes. Then in a loop, call imcrop() to crop out each grain to it's own box. Let me know if you can't figure it out. Here's a start
[mask, maskedImage] = createMask(rgbImage); % From Color Thresholder
props = regionprops(mask, 'BoundingBox')
numRows = ceil(sqrt(length(props)));
hFig = figure;
hFig.WindowState = 'maximized'
for k = 1 : length(props)
thisBox = props(k).BoundingBox;
croppedImage = imcrop(rgbImage, thisBox);
subplot(numRows, numRows, k);
imshow(croppedImage);
end

Kategorien

Mehr zu Convert Image Type finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by