Finding Minimum value of radius
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Problem 1: The volume V and paper surface area of a conical paper cup are given by:
V=1/3*pi*r^2*h
A =pi*r*sqrt(r^2+h^2)
For V = 10 in 3 , compute the value of the radius, r that minimizes the area A. What is the corresponding value of the height, h? What is the minimum amount that r can vary from its optimal value before the area increases by 10%.
6 Kommentare
Akzeptierte Antwort
Youssef Khmou
am 26 Mär. 2013
Bearbeitet: Youssef Khmou
am 26 Mär. 2013
hi Suman Koirla, try this :
The Volume is given by : V=(1/3)*r²*h, and the surface A=pi*r*sqrt(r²+h²)
for V=10 m^3, we search for r that minimizes the Surface , :
Min(A) , SUBject to V=10
we have : h=3*V/pi*r² then : A=pi*r*sqrt(r²+90/pi²*r^4) .
Min(A) means the dA/dr=0=......=4*pi*r^3-180 /(2*sqrt(pi*r^4+90/r²))=0
Fast way to find R :
syms r
A=(pi^2*r^2+90/r^2)^1/2
ezplot(A)
S=subs(A,-6:0.1:6); % AXIS based on the first graph
min(S)
1)so the minimum value for S=29.83 meter is R=1.89 ( FROM THE GRapH )
2) The corresponding value for h=3*10/(pi*1.89)=5.0525 meter .
4 Kommentare
Weitere Antworten (2)
Walter Roberson
am 26 Mär. 2013
Are you required to use a minimizer? The question can be solved analytically with a tiny amount of algebra together with some small calculus.
Youssef Khmou
am 27 Mär. 2013
Bearbeitet: Youssef Khmou
am 27 Mär. 2013
3)What is the minimum amount that r can vary from its optimal value before the area increases by 10% ( with fixed h ) :
Given S=29.83 m² and h=5.05 m, we have the new surface S2 :
__________
S2=S+0.1*S=32.81 m²=pi*r*\/ r²+h² .
S2²=pi².r^4 + pi²r²h² , make it as equation of 4th order :
r^4 + r² . h² -S2²/pi² = 0 ==> r^4 + 25.50 *r² - 109.7 = 0
We use the command "root" :
the Polynomial is a*r^4 + b*r^3 + c*r^2 + b*r + d = 0
a=1; b=0; c=25.50; d=-109.7
R_amount = roots([1 0 25.50 0 -109.7])
R_amount =
0.0000 + 5.4084i
0.0000 - 5.4084i
1.9366
-1.9366
The reasonable answer is the third one, R=1.9366 the amount change is
DELTA_R=1.9366-1.89=0.04 meter .
0 Kommentare
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!