Setting up a function to use with ODE solver
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi. I'm working on a project using one of the ode solvers in matlab to generate a numerical solution to an ode for charged particle motion. I've used the ODE solver before but I'm just confused on how to set up my function for my equation. The equation I'm using to solve for general motion for the charged particle is:
m*(dv/dt) = q(v x B)
I know that the general analytic solution to this problem is r = mV/qB but I am unsure of how to work this out with the ODE solution. If anyone could give me some help setting up my function it would be greatly appreciated. Thank you.
6 Kommentare
Antworten (2)
Babak
am 7 Mär. 2013
You need to write the equation in the dimentionless form. You cannot just simply write numbers like
m = 9.10938188 * 10^-31
in MATLAB and excpect it work fine!
0 Kommentare
Jan
am 7 Mär. 2013
Bearbeitet: Jan
am 7 Mär. 2013
How much faster is this:
function drdt = diffrv(t, rv)
q = 1.60217646e-19; % Avoid expensive power operation
m = 9.10938188e-31; % mass of electron
B = 1e-9;
c = (q/m)*B;
drdt = zeros(4,1);
drdt(1) = c*rv(2);
drdt(2) = -c*rv(1);
drdt(3) = c*drdt(2);
drdt(4) = -c*drdt(1);
% Useless: drdt = [drdt(1);drdt(2);drdt(3);drdt(4)]
end
When the relative and absolute tolerances are such tiny, long computing times can be expected. Unfortunately the results are not necessarily better, because small tolerances lead to a high number of integration steps and the rounding errors accumulate.
0 Kommentare
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!