Creating Diagonal Matrix from a Vector

19 Ansichten (letzte 30 Tage)
Piyush Gupta
Piyush Gupta am 16 Nov. 2020
Beantwortet: KSSV am 16 Nov. 2020
I have a vector g = [g0 g1 g2 g3 ... gx]
I want to create a matrix of the form:
Here x = (m-n)
Any thoughts on how I can do this?

Akzeptierte Antwort

Stephen23
Stephen23 am 16 Nov. 2020
The efficient MATLAB approach:
g = [1,2,3,4,5];
z = zeros(1,numel(g)-1);
m = toeplitz([g(1),z],[g,z])
m = 5×9
1 2 3 4 5 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 1 2 3 4 5

Weitere Antworten (3)

Ameer Hamza
Ameer Hamza am 16 Nov. 2020
Bearbeitet: Ameer Hamza am 16 Nov. 2020
This is one way
g = [1 2 3 4 5];
n = numel(g);
M_ = [eye(n) zeros(n,n-1)];
M = zeros(n, 2*n-1);
for i = 1:n
M = M + circshift(M_*g(i), i-1, 2);
end
Result
>> M
M =
1 2 3 4 5 0 0 0 0
0 1 2 3 4 5 0 0 0
0 0 1 2 3 4 5 0 0
0 0 0 1 2 3 4 5 0
0 0 0 0 1 2 3 4 5

Bruno Luong
Bruno Luong am 16 Nov. 2020
Bearbeitet: Bruno Luong am 16 Nov. 2020
>> g=[1 2 3]
g =
1 2 3
>> p=length(g);
>> s=10;
>> A=full(spdiags(repmat(g,s,1),0:p-1,s,s+p-1))
A =
1 2 3 0 0 0 0 0 0 0 0 0
0 1 2 3 0 0 0 0 0 0 0 0
0 0 1 2 3 0 0 0 0 0 0 0
0 0 0 1 2 3 0 0 0 0 0 0
0 0 0 0 1 2 3 0 0 0 0 0
0 0 0 0 0 1 2 3 0 0 0 0
0 0 0 0 0 0 1 2 3 0 0 0
0 0 0 0 0 0 0 1 2 3 0 0
0 0 0 0 0 0 0 0 1 2 3 0
0 0 0 0 0 0 0 0 0 1 2 3
% This work as well
>> A = toeplitz([g(1) zeros(1,s-1)],[g zeros(1,s-1)]);

KSSV
KSSV am 16 Nov. 2020
g = rand(1,4) ;
m = length(g) ;
P =zeros(m) ;
d=size(diag(P,i),1);%this is the size of the vector with elements of the kth diagonal
for i = 1:m
e=g(i)*ones(m+1-i,1);
P = P+diag(e,i-1);
end

Kategorien

Mehr zu Operating on Diagonal Matrices finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by