Finding all possible row combinations of a matrix that add to zero
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
I'm looking for a general way to find all possible row combinations of a matrix that add to zero.
For instance, for the matrix
A = [-1 0 0 ; 1 0 0 ; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
the following 6 row combinations would all sum to zero
A(1,:)+A(2,:)
A(1,:)+A(3,:)+A(4,:)+A(6,:)
A(1,:)+A(3,:)+A(5,:)+A(6,:)
-A(2,:)+A(3,:)+A(4,:)+A(6,:)
-A(2,:)+A(3,:)+A(5,:)+A(6,:)
-A(4,:)+A(5,:)
Does MATLAB have any built-in functions that can help me do this? Generating all possible row combinations and testing to see which ones sum to zero seems like it would be extremely computationally intensive.
Thanks,
Kevin
0 Kommentare
Akzeptierte Antwort
Azzi Abdelmalek
am 21 Feb. 2013
Bearbeitet: Azzi Abdelmalek
am 21 Feb. 2013
Edit2
A = [-1 0 0 ; 1 0 0 ; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
n=size(A,1);
idx=logical(npermutek([0 1],n));
p=size(idx,1);
out=cell(p,1);
for k=1:p
out{k}=sum(A(idx(k,:),:),1);
end
You can get you sum in a matrix 647x3
M=cell2mat(out)
npermutek is a Matt Fig submission at http://www.mathworks.com/matlabcentral/fileexchange/11462-npermutek/content/npermutek.m
5 Kommentare
Azzi Abdelmalek
am 21 Feb. 2013
Bearbeitet: Azzi Abdelmalek
am 21 Feb. 2013
There is another error, it's
sum(A(idx(k,:),:),1)
instead of
sum(A(idx(k,:),:)
Look at the second Edit
Weitere Antworten (4)
Azzi Abdelmalek
am 21 Feb. 2013
Bearbeitet: Azzi Abdelmalek
am 21 Feb. 2013
Ok try this
Edit
A = [-1 0 0 ;1 0 0; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
n=size(A,1)
idx1=npermutek([0 -1 1],n);
p=size(idx1,1);
out=cell(p,1);
for k=1:p
out{k}=sum(bsxfun(@times,A,idx1(k,:)'),1);
end
M=cell2mat(out)
find(~any(M,2))
10 Kommentare
Azzi Abdelmalek
am 21 Feb. 2013
Ok, You did not specify that in your question. You should give all information in your question to avoid wasting of time.
Azzi Abdelmalek
am 21 Feb. 2013
Try this
A = [-1 0 0 ;1 0 0; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
n=size(A,1)
idx1=npermutek([0 -1 1],n);
p=size(idx1,1);
out=cell(p,1);
for k=1:p
out{k}=sum(bsxfun(@times,A,idx1(k,:)'),1);
end
M=cell2mat(out)
ii=find(~any(M,2))
idx2=idx1(ii,:)
for k=1:size(idx2,1)
jj{k}=find(idx2(k,:))
end
for k=1:numel(jj)
iddx{k}=find(cellfun(@(x) isequal(x,jj{k}),jj))
ee(k)=iddx{k}(1)
end
result=idx2(unique(ee),:)
Azzi Abdelmalek
am 22 Feb. 2013
Bearbeitet: Azzi Abdelmalek
am 22 Feb. 2013
Try this code
A = [-1 0 0 ;1 0 0; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
n=size(A,1)
idx1=npermutek([0 -1 1],n);
p=size(idx1,1);
out=cell(p,1);
for k=1:p
out{k}=sum(bsxfun(@times,A,idx1(k,:)'),1);
end
M=cell2mat(out);
ii=find(~any(M,2));
idx2=idx1(ii,:);
for k=1:size(idx2,1);
jj{k}=find(idx2(k,:));
end
for k=1:numel(jj);
iddx{k}=find(cellfun(@(x) isequal(x,jj{k}),jj));
ee(k)=iddx{k}(1);
end
result=idx2(unique(ee),:);
n=size(result,1);
test=0;
ii=1;
while test==0
ii=ii+1;
a=find(result(ii,:));
c=result(ii,a);
e=result(:,a);
f=find(ismember(e,c,'rows'));
f(1)=[];
if ~isempty(f);
result(f,:)=[];
n=n-1;
end
if ii==n-1
test=1;
end
end
result
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!