Use interp1 to interpolate a matrix row-wise
35 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am currently trying to expand some code to work with matrices and vectors instead of vectors and scalars. So the same calculations are to be done row-wise for n number of rows. How do I get interp1 to do this?
before I used something like this:
new_c = interp1(error,c,0,'linear',extrap')
It is used to find the value of c when an error approaches zero. Now I tried to just enter the matrices where each row is the same as the vector I used before and I get the error message "Index exceeds matrix dimensions".
I tried changing the zero to a vector of zeros but that did not help. I know I could solve it with a for-loop where I evaluate each row individually but I would prefer not to since I assume the matrix operation would save a lot of time.
0 Kommentare
Akzeptierte Antwort
the cyclist
am 19 Feb. 2013
Here is an example adapted from the online documentation ("doc interp1"):
x = 0:10;
y1 = sin(x);
y2 = 2*sin(x);
y = [y1;y2]';
xi = 0:.25:10;
yi = interp1(x,y,xi);
figure
plot(x,y,'o',xi,yi)
4 Kommentare
the cyclist
am 20 Feb. 2013
The documentation for interp1() is explicit in that x [the first input to interp1()] has to be a vector. I assumed that you had the same x values for each row of your y matrix, and that is what my example does.
If you do not have that, I'm not sure you can do this other than via a for loop. (A quick web search on the keywords suggests that it is not possible.)
The answer from Jan in this thread has a faster interpolation function than interp1(), if that helps: http://www.mathworks.com/matlabcentral/answers/44346
Weitere Antworten (5)
Jan
am 20 Feb. 2013
Bearbeitet: Jan
am 20 Feb. 2013
INTERP1 is slow and calling it repeatedly in a loop has a large overhead. But a linear interpolation can be implemented cheaper:
function Yi = myLinearInterp(X, Y, Xi)
% X and Xi are column vectros, Y a matrix with data along the columns
[dummy, Bin] = histc(Xi, X); %#ok<ASGLU>
H = diff(X); % Original step size
% Extra treatment if last element is on the boundary:
sizeY = size(Y);
if Bin(length(Bin)) >= sizeY(1)
Bin(length(Bin)) = sizeY(1) - 1;
end
Xj = Bin + (Xi - X(Bin)) ./ H(Bin);
% Yi = ScaleTime(Y, Xj); % FASTER MEX CALL HERE
% return;
% Interpolation parameters:
Sj = Xj - floor(Xj);
Xj = floor(Xj);
% Shift frames on boundary:
edge = (Xj == sizeY(1));
Xj(edge) = Xj(edge) - 1;
Sj(edge) = 1; % Was: Sj(d) + 1;
% Now interpolate:
if sizeY(2) > 1
Sj = Sj(:, ones(1, sizeY(2))); % Expand Sj
end
Yi = Y(Xj, :) .* (1 - Sj) + Y(Xj + 1, :) .* Sj;
The M-version is faster than INTERP1 already, but for the faster MEX interpolation: FEX: ScaleTime. Then the above code is 10 times faster than INTERP1.
0 Kommentare
Thorsten
am 20 Feb. 2013
for i = 1:size(E, 1)
new_c(i) = interp1(E(i, :), C(i, :), 0, 'linear', 'extrap');
end
2 Kommentare
Matt J
am 20 Feb. 2013
Bearbeitet: Matt J
am 20 Feb. 2013
I assume 'error' is always non-negative? If so, you're really just trying to linearly extrapolate the first 2 data points in each row, which can be done entirely without for-loops and also without INTERP1,
e1=error(:,1);
c1=c(:,1);
e2=error(:,2);
c2=c(:,2);
slopes=(c2-c1)./(e2-e1);
new_c = c1-slopes.*e1;
1 Kommentar
Matt J
am 20 Feb. 2013
Note that new_c is just the y-intercepts of the line defined by the first 2 points.
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!