Polynomial fitting of each pixel in an image without looping
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have 3x7 images of 256x256 pixels stored in a cell array, i.e. for each pixel i have 7 x-values, 7 y-values and 7 z-values. I want to find the coefficients for z=k1*x + k2*y + k3*x^2 + k4*y^2 + k5*x*y in a least square sense for each pixel without looping over each pixel. Is there a more efficient way to do this?
0 Kommentare
Akzeptierte Antwort
ChristianW
am 11 Feb. 2013
Bearbeitet: ChristianW
am 13 Feb. 2013
Referring to your 256 sec calulation time:
Got it to 1 sec and 0.8 with parfor. (on my cpu)
dim = 256;
C = mat2cell(randi(255,dim*3,dim*7), dim*ones(1,3), dim*ones(1,7));
tic
C0 = cellfun(@(x) reshape(x,1,[]),C,'UniformOutput',false);
X = cat(1,C0{1,:});
Y = cat(1,C0{2,:});
Z = cat(1,C0{3,:});
K = cell(size(C{1}));
for i = 1:size(X,2) % 1:NumberOfPixelsPerImage
K{i} = [X(:,i), Y(:,i), X(:,i).^2, Y(:,i).^2, X(:,i).*Y(:,i)]\Z(:,i);
end
toc
Weitere Antworten (4)
Image Analyst
am 10 Feb. 2013
I don't understand your data layout. So you have a cell array with 3 rows and 7 columns. What is inside each cell? Is each cell a 256 by 256 array of either x, y, or z values, like
{256x256 x1 values}, {256x256 x2 values},....{256x256 x7 values};
{256x256 y1 values}, {256x256 y2 values},....{256x256 y7 values};
{256x256 z1 values}, {256x256 z2 values},....{256x256 z7 values};
ChristianW
am 11 Feb. 2013
Is the overall result just 5 scalar k values?
X = cat(1,C{1,:});
Y = cat(1,C{2,:});
Z = cat(1,C{3,:});
M = [X(:), Y(:), X(:).^2, Y(:).^2, X(:).*Y(:)];
K = M\Z(:); % Z = M*K
7 Kommentare
ChristianW
am 11 Feb. 2013
I'll give it a second shot. I need some help with the math.
Lets talk about a single pixel only. With 7 xValues in X(:,1), each row one of the 7 pictures (analogously for Y and Z), like this:
X = [pixel1_image1
pixel1_image2
...
pixel1_image7];
With these inputs, does this function solve the equations for that pixel?
function K = fcn(X,Y,Z)
M = [X, Y, X.^2, Y.^2, X.*Y];
K = M\Z; % Z = M*K
I need a check for that function or an example input with correct output to varify.
Teja Muppirala
am 12 Feb. 2013
Here's an approach using sparse matrices to do it. this works in about 0.3 seconds for me, and gives the coefficients in a 5x65536 matrix K.
It should be noted that using a simple for-loop is much simpler to implement, and still works in about 0.6 seconds if you preallocate properly.
% Making random data
dim = 256;
C = mat2cell(randi(255,dim*3,dim*7), dim*ones(1,3), dim*ones(1,7));
tic
C0 = cellfun(@(x) reshape(x,1,[]),C,'UniformOutput',false);
X = cat(1,C0{1,:});
Y = cat(1,C0{2,:});
Z = cat(1,C0{3,:});
M = permute( cat(3,X,Y,X.^2,Y.^2,X.*Y), [1 3 2]);
% Generate the locations of the block-diagonal sparse entries
jloc = repmat(1:(dim^2*5),7,1);
iloc = bsxfun(@plus, repmat((1:7)',1,5) ,reshape( 7*(0:dim^2-1) , 1, 1, []));
SM = sparse(iloc(:),jloc(:),M(:));
% Do the pseudoinversion
K = (SM'*SM) \ (SM'*Z(:));
K = reshape(K,5,[]);
toc
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!