the calculation of the eigenvector

3 Ansichten (letzte 30 Tage)
jad bousaid
jad bousaid am 5 Okt. 2020
Bearbeitet: Bruno Luong am 6 Okt. 2020
B =
1.0e+06 *
0.6064 -0.4550 0.0776 -0.6532 0.4550 0.0126
-0.4550 1.6724 0.0180 0.4550 -0.3209 0.0180
0.0776 0.0180 0.3626 -0.0126 -0.0180 0.0569
-0.6532 0.4550 -0.0126 1.0029 -0.4550 0.5070
0.4550 -0.3209 -0.0180 -0.4550 4.4121 -0.0180
0.0126 0.0180 0.0569 0.5070 -0.0180 0.9314
D1 =
a
b
c
d
e
f
how can i find the unkowns a b c d e f if [B]*[D1]==0 and [D1] is the eigenvector
please give me all the details and the coding because i'm new to MATLAB and i'm still learning it
And thank you in advanced.
  2 Kommentare
Ameer Hamza
Ameer Hamza am 5 Okt. 2020
D1 = [0; 0; 0; 0; 0; 0]
seems to be the only solution.
John D'Errico
John D'Errico am 5 Okt. 2020
Ameer - correct, in a sense. The matrix is full rank, and therefore no solution exists. The nullspace is theoretically empty. See my comment on Alan's answer.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Alan Stevens
Alan Stevens am 5 Okt. 2020
You seem a little confused about eigenvalues and eigenvectors. The following code might provide some clarification:
B = [0.6064 -0.4550 0.0776 -0.6532 0.4550 0.0126;
-0.4550 1.6724 0.0180 0.4550 -0.3209 0.0180;
0.0776 0.0180 0.3626 -0.0126 -0.0180 0.0569;
-0.6532 0.4550 -0.0126 1.0029 -0.4550 0.5070;
0.4550 -0.3209 -0.0180 -0.4550 4.4121 -0.0180;
0.0126 0.0180 0.0569 0.5070 -0.0180 0.9314]*10^6;
[V, D] = eig(B);
% The eigenvalues lie along the diagonal of D
% The corresponding eigenvectors are the columns of V
eigvals = diag(D);
disp('Eigenvalues')
disp(eigvals)
disp('Eigenvectors')
disp(V)
% Test Change n from 1 to 6 to check each one
n = 1;
LHS = B*V(:,n);
RHS = eigvals(n)*V(:,n);
disp('Check')
disp([LHS RHS])
This produces the following eigenvalues and eigenvectors
Eigenvalues
1.0e+06 *
0.0000
0.3368
0.6801
1.2532
2.0983
4.6193
Eigenvectors
-0.7069 0.1149 -0.5810 -0.0407 -0.3522 -0.1543
-0.0279 0.0922 -0.3828 -0.5569 0.7141 0.1551
0.0784 -0.9559 -0.2820 0.0225 -0.0076 0.0018
-0.6145 -0.1437 0.3404 0.4577 0.4967 0.1722
0.0092 -0.0249 0.0754 0.0193 0.2676 -0.9600
0.3400 0.2080 -0.5611 0.6912 0.2185 0.0286
  6 Kommentare
Bruno Luong
Bruno Luong am 5 Okt. 2020
"so all i need to do is to take more than 4 decimal places in B to get more accurate results"
Not really, the lesson you should draw is that never post here a screen capture of matrix displaying alone. Give us your matrix in MAT format, unless you have a code to generate it.
You should avoid communicate numerical data with a screen output.
jad bousaid
jad bousaid am 6 Okt. 2020
Bearbeitet: Bruno Luong am 6 Okt. 2020
i'll sent you the formula(screenshot205) and also the dimensions(screemshot155) if it will help you:)
A for the colums 0.4*0.8
A for the beams 0.4*0.6
you should calculate this matrix(screenshot205) for each element then add them together to obtain the K matrix
and i almost forget you need the Mass matrix,it is a 6*6 matrix with 84.1 its diagonal.
([K]-w^2[M])Φ=0 you will calculate the values of w^2 then the Φ vectors.
and if i forgot anything please don't hesitate to contact me.
Thank You @Bruno Luong :)

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by