Standard error of regression curve
34 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hakan Süleyman
am 13 Sep. 2020
Kommentiert: Hakan Süleyman
am 13 Sep. 2020
Hello,
I have two vectors, named as x and y. I would like to estimate the standard error of a regressed curve of these data points. The regression model is defined as ft in the below code. Can you please let me know if there is a way to estimate the standard error of b and m coefficients of this fit type?
x=[2;4;6;9;12;15;18]
y=[188;198;294;433;661;875;1097]
ft = fittype( 'b*x^m');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
fitresult= fit( x, y, ft, opts );
0 Kommentare
Akzeptierte Antwort
Adam Danz
am 13 Sep. 2020
Bearbeitet: Adam Danz
am 13 Sep. 2020
Follow this answer provided by MathWorks support [here]. Since the degrees of freedom are not defined in that answer, here's a more complete answer:
% Your data and their fit
x=[2;4;6;9;12;15;18]
y=[188;198;294;433;661;875;1097]
ft = fittype( 'b*x^m');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
[fitresult, gof] = fit( x, y, ft, opts ); % <-- also include 2nd output!
% Compute standard error of the coefficients.
alpha = 0.95; % Choose an alpha level
ci = confint(fitresult, alpha)
df = gof.dfe;
t = tinv((1+alpha)/2, df);
se = (ci(2,:)-ci(1,:)) ./ (2*t) % Standard Error
% Results in same order as coefficients listed in fitresult.
% se =
% 10.0399163997427 0.0994320537151288
3 Kommentare
Adam Danz
am 13 Sep. 2020
@Hakan Süleyman you have a good point and now I'm second guessing that approach for nonlinear models.
Unforunately I have to shut down for the day but this discussion linked below might be what you're looking for, particularly Richard Willey's answer.
I'd be interested if you find a more suitable approach and I may look into it later, myself.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!