How to find unknown variable in the below equation?

1 Ansicht (letzte 30 Tage)
Megha
Megha am 1 Sep. 2020
Kommentiert: Megha am 3 Sep. 2020
I wish to solve the equation as shown below:
So, I made a new variable "A1" as coded below with i/p parameters.
r = 3.88;
Vau = 43;
theta_u = 71.8;
gamma = 5/3;
Vsu = 47.45;
syms Unu
A1 = double(solve(((Unu^2 - (r * Vau^2 *(cosd(theta_u))^2))^2) * (Unu^2 - ((2 * r * Vsu^2)/(r+1-gamma*(r-1)))) - ((r * (sind(theta_u)^2) * Unu^2 * Vau^2) *((2 * r - gamma * (r-1))*(Unu^2)/(r+1-gamma(r-1)) - r * Vau^2 * (cosd(theta_u))^2))))
A1 shows error like:
Subscript indices must either be real positive integers or logicals.
Error in IPS_P2 (line 333)
A1 = double(solve(((Unu^2 - (r * Vau^2 *(cosd(theta_u))^2))^2) * (Unu^2 - ((2 * r * Vsu^2)/(r+1-gamma*(r-1)))) - ((r * (sind(theta_u)^2) * Unu^2 * Vau^2) *((2 * r - gamma * (r-1))*(Unu^2)/(r+1-gamma(r-1)) - r * Vau^2 * (cosd(theta_u))^2))))
Can anyone please help me, if there is any error in coding equation?

Akzeptierte Antwort

Alan Stevens
Alan Stevens am 1 Sep. 2020
The equation is a cubic in Unu^2, so the following uses roots to find solutions:
r = 3.88;
Vau = 43;
theta_u = 71.8;
gamma = 5/3;
Vsu = 47.45;
A = r*Vau^2*cos(theta_u)^2;
B = 2*r*Vsu^2/(r+1-gamma*(r-1));
C = r*Vau^2*sin(theta_u)^2;
D = (2*r - gamma*(r-1))/(r+1 - gamma*(r - 1));
% Let x = Unu^2
% (x - A)^2*(x - B) - C*x*(D*x - A) = 0
% (x/A - 1)^2*(x/A - B/A) - C/A*(x/A)*(D*x/A - 1) = 0
% Let y = x/A
% (y^2 - 2y + 1)*(y - B/A) - D*C/A*y^2 + C/A*y = 0
% Expand and collect like terms to get:
% y^3 -(2 + B/A + D*C/A)y^2 + (1 + 2*B/A + C/A)y - B/A = 0
p = [1; -(2 + B/A + D*C/A); (1 + 2*B/A + C/A); -B/A];
y = roots(p);
x = A*y; % reconstruct x
Unu = sqrt(x); % reconstruct Unu
disp(y)
disp(x)
disp(Unu)
% Check (f should be zero)
f = polyval(p,y);
disp(f)
  6 Kommentare
Alan Stevens
Alan Stevens am 3 Sep. 2020
"solve" produces a symbolic solution, but not all equations have symbolic solutions. "roots" provides numerical solutions only. As John said (above) "roots" is faster and more efficient.
Megha
Megha am 3 Sep. 2020
Great. Thank you so much

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by