Euler's method for second ODE
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
The equation given is: y′′+2y=0 y(0) = 5 y′(0) = 0
And I know how to solve it with standard methods but I need to solve it in Matlab with Euler's method.
How would I split this second order into 2 first order equations that I could plug into this code? I think it becomes v=y' and then v'=-2y... but I do not know how to plug this with v and y.
Here is example code with y'=-y (NOT second order)
% Numerical code for Euler integration of y'=-y; y(0)=1;
Tstart=0; %start Time Tstop=10; %Stop Time N=20; %Number of Time steps h=(Tstop-Tstart)/N; %Time step length
Time=[Tstart:h:Tstop]; %Time vector
y=zeros(1,length(Time)); %Solution vector
y(1)=1;
for i=2:length(Time)
y(i)=y(i-1)+h*(-y(i-1)); %Euler iteration
end
figure;plot(Time,y,'.k');
y_analytic=exp(-Time); %analytic solution
hold;plot(Time,y_analytic,'r');
THANKS!
0 Kommentare
Antworten (1)
bym
am 2 Dez. 2012
you are very close, try defining v as
v = zeros(length(t),2);
v (1,:)= [5,0]; % initial conditions
then write your y (from your example) in terms of [v, v']
0 Kommentare
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!