Velocity of a Weather Balloon
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ertugrul Icer
am 16 Jun. 2020
Kommentiert: Image Analyst
am 17 Jun. 2020
Let the following polynomial represent the velocity of a weather balloon following the launch:
v(t) = -0.25*t.^3 + 36*t.^2 - 760t + 4100
Here, "t" needs to be dened as a symbolic variable. By using the given velocity polynomial, construct a MATLAB code to:
a) Find the altitude polynomial of the balloon in terms of t where constant term of the altitude polynomial is dened as "9".
b) Determine when the balloon hits the ground (Your code should give one exact answer as an acceptable numerical value for t).
c) Obtain plots of altitude and velocity from time 0 until the balloon hits the ground by using the command "ezplot".
2 Kommentare
Akzeptierte Antwort
David Hill
am 16 Jun. 2020
I will give you a start:
syms t;
v=-0.25*t.^3 + 36*t.^2 - 760*t + 4100;
s=int(v)+9;
a=diff(v);
ezplot(s,[0,155.7]);
figure;
ezplot(v,[0,155.7]);
5 Kommentare
David Hill
am 17 Jun. 2020
Because it is a polynomial and matlab has special functions that support polynomials.
Weitere Antworten (1)
Image Analyst
am 17 Jun. 2020
Another hint:
t = linspace(0, 125, 1000);
v = -0.25*t.^3 + 36*t.^2 - 760*t + 4100 % Your equation
% Now plot it:
plot(t, v, 'b-', 'LineWidth', 2);
grid on;
xlabel('t', 'FontSize', 20);
ylabel('Velocity', 'FontSize', 20);
% Draw a line at v=0
yline(0, 'Color', 'black', 'LineWidth', 2);

1 Kommentar
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!