Velocity of a Weather Balloon

8 Ansichten (letzte 30 Tage)
Ertugrul Icer
Ertugrul Icer am 16 Jun. 2020
Kommentiert: Image Analyst am 17 Jun. 2020
Let the following polynomial represent the velocity of a weather balloon following the launch:
v(t) = -0.25*t.^3 + 36*t.^2 - 760t + 4100
Here, "t" needs to be dened as a symbolic variable. By using the given velocity polynomial, construct a MATLAB code to:
a) Find the altitude polynomial of the balloon in terms of t where constant term of the altitude polynomial is dened as "9".
b) Determine when the balloon hits the ground (Your code should give one exact answer as an acceptable numerical value for t).
c) Obtain plots of altitude and velocity from time 0 until the balloon hits the ground by using the command "ezplot".
  2 Kommentare
David Hill
David Hill am 16 Jun. 2020
What have you done? Do you have a specific question?
Ertugrul Icer
Ertugrul Icer am 16 Jun. 2020
I couldn't write the code the question asked for

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

David Hill
David Hill am 16 Jun. 2020
I will give you a start:
syms t;
v=-0.25*t.^3 + 36*t.^2 - 760*t + 4100;
s=int(v)+9;
a=diff(v);
ezplot(s,[0,155.7]);
figure;
ezplot(v,[0,155.7]);
  5 Kommentare
Ertugrul Icer
Ertugrul Icer am 16 Jun. 2020
i think its true but why; why u write like (v=[-.25,36,-760,4100];) how can be possible without using (t)
David Hill
David Hill am 17 Jun. 2020
Because it is a polynomial and matlab has special functions that support polynomials.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Image Analyst
Image Analyst am 17 Jun. 2020
Another hint:
t = linspace(0, 125, 1000);
v = -0.25*t.^3 + 36*t.^2 - 760*t + 4100 % Your equation
% Now plot it:
plot(t, v, 'b-', 'LineWidth', 2);
grid on;
xlabel('t', 'FontSize', 20);
ylabel('Velocity', 'FontSize', 20);
% Draw a line at v=0
yline(0, 'Color', 'black', 'LineWidth', 2);

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by