Real Time Angle Detection for Inverted Pendulum

1 Ansicht (letzte 30 Tage)
James Rhodes
James Rhodes am 17 Mai 2020
Kommentiert: Image Analyst am 17 Mai 2020
I am currently trying to develop an inverted pendulum stablisation system using matlab and simulink utilising visual feedback. I have been trying to use 'Image Acquisition Toolbox' with imfindcircles to identify angles, this is what i currently have in place:
  1. Getting a snapshot of the current video
  2. Using imfindcircles to locate the main circles on the lever/arm of the pendulum
  3. Drawing line between those two points
  4. Drawing a vertical line which can be a static reference to compare the angle between lever arm and vertical line.
  5. computing angle of the two lines using an equation
  6. (will have to implement a for loop in which 1-5 is completed to ensure its real-time analysis)
I am struggling to determine the following:
  1. Will this be viable for a time senstive control system?
  2. Will image acquisition tool be able to compute these processes near real-time?
  3. is there anyway in which this can be improved (imfindcirlces can be unreliable at times causing the program to crash)?
Below is a snapshot of the code with its results: (above line 40 is simply lots of comments and using "vid = videoinput('winvideo', 1, 'MJPG_1920x1080');
src = getselectedsource(vid);" to import the files).
The current angle displayed is within 1 degree of error which I believe is acceptable (an if statement has been used for the angle formula for occasions the lever is to the left).
Any help or suggestions would be appreciated. Thankyou!
  2 Kommentare
Yundie Zhang
Yundie Zhang am 17 Mai 2020
I suggest you try gaelkim7@gmail com
James Rhodes
James Rhodes am 17 Mai 2020
Will do, thankyou!.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Image Analyst
Image Analyst am 17 Mai 2020
Why are you using findcircles? Can't you just threshold? It's a lot faster I believe. And simpler. Then make a mask and erase the pivot point and determine the angle using regionprops().
clc; % Clear the command window.
fprintf('Beginning to run %s.m.\n', mfilename);
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 20;
grayImage = imread('pendulum.png');
% Get the dimensions of the image.
% numberOfColorChannels should be = 1 for a gray scale image, and 3 for an RGB color image.
[rows, columns, numberOfColorChannels] = size(grayImage);
if numberOfColorChannels > 1
% It's not really gray scale like we expected - it's color.
% Use weighted sum of ALL channels to create a gray scale image.
grayImage = rgb2gray(grayImage);
% ALTERNATE METHOD: Convert it to gray scale by taking only the green channel,
% which in a typical snapshot will be the least noisy channel.
% grayImage = grayImage(:, :, 2); % Take green channel.
end
% Display the image.
subplot(2, 2, 1);
imshow(grayImage, []);
title('Original Grayscale Image', 'FontSize', fontSize, 'Interpreter', 'None');
impixelinfo;
hFig = gcf;
hFig.WindowState = 'maximized'; % May not work in earlier versions of MATLAB.
drawnow;
subplot(2, 2, 2);
imhist(grayImage);
grid on;
title('Histogram', 'FontSize', fontSize);
maskImage = imread('mask.png') > 128;
subplot(2, 2, 3);
imshow(maskImage, []);
title('Mask of Pivot Point', 'FontSize', fontSize);
someGrayLevel = 50;
binaryImage = grayImage < someGrayLevel; % Binarize it, or use binaryImage = ~imbinarize(grayImage).
% Erase pivot point
binaryImage(maskImage) = false;
% Extract largest blob only.
binaryImage = bwareafilt(binaryImage, 1);
% Fill any noise holes.
binaryImage = imfill(binaryImage, 'holes');
subplot(2, 2, 4);
imshow(binaryImage, []);
axis('on', 'image');
% Find orientation
props = regionprops(binaryImage, 'Orientation', 'Centroid');
angle = props.Orientation
fprintf('The angle = %f\n', angle);
% Mark the centroid.
hold on;
xCentroid = props.Centroid(1)
yCentroid = props.Centroid(2)
plot(xCentroid, yCentroid, 'r+', 'MarkerSize', 25, 'LineWidth', 2);
xFit = 1 : columns;
angle = -props.Orientation
slope = tand(angle)
yFit = slope * (xFit - props.Centroid(1)) + props.Centroid(2);
yFit(yFit < 1) = nan;
yFit(yFit > rows) = nan;
plot(xFit, yFit, 'c-', 'LineWidth', 2);
caption = sprintf('Pendulum with arm angle of %.2f degrees', angle);
title(caption, 'FontSize', fontSize);
% Draw another cyan line from the centroid upwards.
line([xCentroid, xCentroid], [1, yCentroid], 'LineWidth', 2, 'Color', 'c');
% Plot on original image also.
subplot(2, 2, 1);
hold on;
plot(xCentroid, yCentroid, 'r+', 'MarkerSize', 25, 'LineWidth', 2);
plot(xFit, yFit, 'c-', 'LineWidth', 2);
line([xCentroid, xCentroid], [1, yCentroid], 'LineWidth', 2, 'Color', 'c');
I'm attaching the mask but of course you'll need to make up a new one with the correct size.
  2 Kommentare
James Rhodes
James Rhodes am 17 Mai 2020
Bearbeitet: James Rhodes am 17 Mai 2020
I was originally using find circles as i thought it was the simplest method, this looks fantastic, I'll need some time to digest all the information. Thankyou so much for the advice!
Image Analyst
Image Analyst am 17 Mai 2020
findcircles() uses the Hough transform which is a fairly compilcated routine I believe.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by