Which Right Eigenvector to report?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
%%Using the data below, what is right eigenvector for A? If V1 0.5662 0.2168 -0.8347, which one is right eigenvector? how about V2 and V3?
>> A=[0 -1 2 ; 5 0 4 ; 7 -2 0];
[V,D,W]=eig(A)
v1=V(1:end,1)
v2=V(1:end,2)
v3=V(1:end,3)
V =
0.5062 + 0.0000i -0.1323 - 0.2072i -0.1323 + 0.2072i
0.2168 + 0.0000i -0.8538 + 0.0000i -0.8538 + 0.0000i
-0.8347 + 0.0000i -0.2323 - 0.3959i -0.2323 + 0.3959i
D =
-3.7259 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.8630 + 3.0679i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 1.8630 - 3.0679i
W =
0.8860 + 0.0000i 0.7895 + 0.0000i 0.7895 + 0.0000i
-0.0111 + 0.0000i -0.2759 - 0.3553i -0.2759 + 0.3553i
-0.4636 + 0.0000i 0.4072 - 0.0923i 0.4072 + 0.0923i
v1 =
0.5062
0.2168
-0.8347
v2 =
-0.1323 - 0.2072i
-0.8538 + 0.0000i
-0.2323 - 0.3959i
v3 =
-0.1323 + 0.2072i
-0.8538 + 0.0000i
-0.2323 + 0.3959i
>>
0 Kommentare
Antworten (2)
Ridwan Alam
am 23 Dez. 2019
Bearbeitet: Ridwan Alam
am 30 Jan. 2020
I assume you meant 'right' as opposed to 'left' eigen vectors.
[V,D] = eig(A); % to get left eigenvectors, [V,D,W] = eig(A), here W has the left eigen vectors
% right eigen vectors and eigen values
V1 = V(:,1); D1 = D(1,1);
V2 = V(:,2); D2 = D(2,2);
V3 = V(:,3); D3 = D(3,3);
V1, V2, and V3 are the right eigen vectors of A, as
A*V1 - V1*D1 % is very small, near zero
A*V2 - V2*D2 % is very small, near zero
A*V3 - V3*D3 % is very small, near zero
Hope this helps.
2 Kommentare
Ridwan Alam
am 30 Jan. 2020
Hi Ahmad, the eigen value is a scalar "value", but the eigen vectors are "vectors".
Here, D1 is your eigen VALUE (scalar) for the corresponding eigen VECTOR V1.
Hope this makes sense.
For more details: https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
Christine Tobler
am 6 Jan. 2020
The left and right eigenvectors are matched one-by-one. For example, for [V, D, W] = eig(A), the eigenvalue D(k, k) corresponds to the right eigenvector V(:, k) and the left eigenvector W(:, k). In other words, A*V = V*D and A'*W = W*conj(D).
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!