Which Right Eigenvector to report?

3 Ansichten (letzte 30 Tage)
AHMAD KHUSYAIRI CHE RUSLI
AHMAD KHUSYAIRI CHE RUSLI am 23 Dez. 2019
Kommentiert: Ridwan Alam am 30 Jan. 2020
%%Using the data below, what is right eigenvector for A? If V1 0.5662 0.2168 -0.8347, which one is right eigenvector? how about V2 and V3?
>> A=[0 -1 2 ; 5 0 4 ; 7 -2 0];
[V,D,W]=eig(A)
v1=V(1:end,1)
v2=V(1:end,2)
v3=V(1:end,3)
V =
0.5062 + 0.0000i -0.1323 - 0.2072i -0.1323 + 0.2072i
0.2168 + 0.0000i -0.8538 + 0.0000i -0.8538 + 0.0000i
-0.8347 + 0.0000i -0.2323 - 0.3959i -0.2323 + 0.3959i
D =
-3.7259 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.8630 + 3.0679i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 1.8630 - 3.0679i
W =
0.8860 + 0.0000i 0.7895 + 0.0000i 0.7895 + 0.0000i
-0.0111 + 0.0000i -0.2759 - 0.3553i -0.2759 + 0.3553i
-0.4636 + 0.0000i 0.4072 - 0.0923i 0.4072 + 0.0923i
v1 =
0.5062
0.2168
-0.8347
v2 =
-0.1323 - 0.2072i
-0.8538 + 0.0000i
-0.2323 - 0.3959i
v3 =
-0.1323 + 0.2072i
-0.8538 + 0.0000i
-0.2323 + 0.3959i
>>

Antworten (2)

Ridwan Alam
Ridwan Alam am 23 Dez. 2019
Bearbeitet: Ridwan Alam am 30 Jan. 2020
I assume you meant 'right' as opposed to 'left' eigen vectors.
[V,D] = eig(A); % to get left eigenvectors, [V,D,W] = eig(A), here W has the left eigen vectors
% right eigen vectors and eigen values
V1 = V(:,1); D1 = D(1,1);
V2 = V(:,2); D2 = D(2,2);
V3 = V(:,3); D3 = D(3,3);
V1, V2, and V3 are the right eigen vectors of A, as
A*V1 - V1*D1 % is very small, near zero
A*V2 - V2*D2 % is very small, near zero
A*V3 - V3*D3 % is very small, near zero
Hope this helps.
  2 Kommentare
AHMAD KHUSYAIRI CHE RUSLI
AHMAD KHUSYAIRI CHE RUSLI am 30 Jan. 2020
Bearbeitet: AHMAD KHUSYAIRI CHE RUSLI am 30 Jan. 2020
Hi Ridwan Alam. Thanks for the answer. But, I little bit confuse when I discuss with my friend, is it D1 = -3.7259? So what is v1 =v(:,1)? Because Im looking for single value, for example right eigenvalue for V= 3.2 ,D=0.6, W= 2.1 or i failed to understand the concept?
Ridwan Alam
Ridwan Alam am 30 Jan. 2020
Hi Ahmad, the eigen value is a scalar "value", but the eigen vectors are "vectors".
Here, D1 is your eigen VALUE (scalar) for the corresponding eigen VECTOR V1.
Hope this makes sense.

Melden Sie sich an, um zu kommentieren.


Christine Tobler
Christine Tobler am 6 Jan. 2020
The left and right eigenvectors are matched one-by-one. For example, for [V, D, W] = eig(A), the eigenvalue D(k, k) corresponds to the right eigenvector V(:, k) and the left eigenvector W(:, k). In other words, A*V = V*D and A'*W = W*conj(D).
  1 Kommentar
AHMAD KHUSYAIRI CHE RUSLI
AHMAD KHUSYAIRI CHE RUSLI am 30 Jan. 2020
Thank you for the answer,
but I still not clear the value of right eigencertor to report.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by