DAE Problem : cannot understand how to find the problem in my code
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
This is code to solve 6 ode's and 12 algebraic equations. All of them are interdependent. How do I go about it? I keep getting errors but I am unable to solve it.
**M file**
*M file* function f=ncs1_dae(t,x)
%Input parameters
global alpha A AH AI AO AV ACS beta CPH CPI CPIN CPO CPV dB g hB hI hO hH hV Hmax k M MH min Pset qein R rhol rhov ri ro TIN TR vB lambda;
input()
%Variables
TI=x(1);
........
..........
=x(16);
%f(1) to f(6) are ODEs
f(1)=
f(2)=
f(3)=
f(4)=
f(5)=
f(6)=
%f(7) to f(18) are Algebraic Equations
f(7)=
f(8)=
f(9)=
f(10)=
f(11)=
f(12)=
f(13)=
f(14)=
f(15)=
f(16)=
f(17)=
f(18)=
f=f';
This is what I enter in the command window:
>> x0=[298 298 298 298 1 0.3 0 373 0 0 0 0 0 0 0 0.0013 0.0041 0.0056];
>> tspan=[0 1200];
>> M=[eye(6,18);zeros(12,18)];
>> options=odeset('Mass',M);
>> [t1,x1]=ode15s(f,[0,1200],x0,options);
The warning msg I get is : Warning: Failure at t=3.014342e-01. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (8.881784e-16) at time t. > In ode15s at 753 >> if true
% code
end
2 Kommentare
Antworten (1)
Jan
am 1 Okt. 2012
Bearbeitet: Jan
am 1 Okt. 2012
You can define an DAE such that there is no feasible point. If the mass matrix is singular, as in your case, the initial slope M(t0, y0) * y'(0) = f(t0, y0) must exist.
Imagine a DAE which describes a point sliding on a circulare wire. If you start the integration with a point apart from the wire, there is no valid first step of the integration, because it is impossible to keep the trajectory on the feasible path.
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!