Trouble Creating a Vector using a for loop with matrices

5 Ansichten (letzte 30 Tage)
Andrew Knight
Andrew Knight am 7 Nov. 2019
Kommentiert: Stephen23 am 7 Nov. 2019
I'm having trouble creating a vector of answers with a for loop involving matrices. When I call on w, it gives me different values than if I were to call on a specific part of w.
B1=[1 0; 0 -7.5];
D1=[0 0;0 10];
X1=[0 0;0 -2.5];
B2=[49.8 0;-0.127 -50];
D2=[25 0;0 25];
A2=[25 0;0 25];
B3=[49.8 0;-0.127 -50];
D3=[25 0;0 25];
A3=[25 0;0 25];
B4=[49.8 0;-0.127 -50];
D4=[25 0;0 25];
A4=[25 0;0 25];
B5=[7.5 0;0 1];
A5=[-10 0;0 0];
Y5=[2.5 0;0 0];
o=[0 0;0 0];
%M
M=[B1 D1 X1 o o;A2 B2 D2 o o;o A3 B3 D3 o;o o A4 B4 D4;o o Y5 A5 B5];
Mi=inv(M);
G=[.21;0;0;0;0;0;0;0;0;0.127];
CG=[.1;.1;.1;.1;.1;.1;.1;.1;.1;.1];
%find L
%L=[b1 o o o o;a2 b2 o o o;o a3 b3 o o;o o a4 b4 o;o o y5 a5 b5]
%U=[I -E1 -x1 o o;o I -E2 o o;o o I -E3 o;o o o I -E4;o o o o I]
n=2;
NJ=5;
w=zeros(2*NJ,1);
for j=1
L(1:(j+1),1:(j+1))=B1; %b(1)=B1
U(1:j+1,j+2:j+3)=-inv(L(1:j+1,1:j+1))*D1; %E(1)=D1*inv(-b(1))
U(1:j+1,2*j+3:2*j+4)=-inv(L(1:j+1,1:j+1))*X1; %x(1)=X1*inv(-b(1))
w(1:2)=inv(L(1:j+1,1:j+1))*G(1:2); %ksi(1) = b(1)^-1 * G(1)
end
for j=2:NJ-1
L(2*j-1:2*j,2*j-3:2*j-2)=A2; %a(2)=A2
L(2*j-1:2*j,2*j-1:2*j)=B2+L(2*j-1:2*j,2*j-3:2*j-2)*U(2*(j-1)-1:2*(j-1),2*(j-1)+1:2*(j-1)+2); %b(2)=B2+a(2)*E(1)
U(2*j-1:2*j,2*j+1:2*j+2)=-inv(L(2*j-1:2*j,2*j-1:2*j))*D2; %E(2)=-inv(b(2))*D(2)
w(2*j-1:2*j)=-inv(L(2*j-1:2*j,2*j-1:2*j))*((-G(2*j-1:2*j)+(L(2*j-1:2*j,2*j-3:2*j-2)*w((2*(j-1)-1):(2*(j-1)))))); %ksi(2)=inv(-b(2))*(-G(2)+a(2)*ksi(1))
end
for j=NJ
L(2*j-1:2*j,2*j-5:2*j-4)=Y5; %y(5)=Y5
L(2*j-1:2*j,2*j-3:2*j-2)=A5+L(2*j-1:2*j,2*j-5:2*j-4)*U(2*(j-2)-1:2*(j-2),2*(j-2)+1:2*(j-2)+2); %a(5)=A5+y(5)*E(NJ-2)
L(2*j-1:2*j,2*j-1:2*j)=B5+L(2*j-1:2*j,2*j-3:2*j-2)*U(2*(j-1)-1:2*(j-1),2*(j-1)+1:2*(j-1)+2); %b(5)=B5+a(5)*E(4)
w(2*j-1:2*j)=-inv(L(2*j-1:2*j,2*j-1:2*j))*(-G(2*j-1:2*j)+L(2*j-1:2*j,2*j-3:2*j-2)*w(2*(j-1)-1:2*(j-1))+L(2*j-1:2*j,2*j-5:2*j-4)*w(2*(j-2)-1:2*(j-2)))%-inv(b(5))*(-G(5)+a(5)*w(4)+y*(w(3))
end
%w=inv(L)*G
%C=inv(U)*w
  1 Kommentar
Stephen23
Stephen23 am 7 Nov. 2019
Note: to make your code more efficient and robust you should probably be using mldivide instead of inv and *. Explicit matrix inversion is rarely required (because there are better methods for solving such systems of equations).

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Produkte


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by