Trouble Creating a Vector using a for loop with matrices
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I'm having trouble creating a vector of answers with a for loop involving matrices. When I call on w, it gives me different values than if I were to call on a specific part of w.
B1=[1 0; 0 -7.5];
D1=[0 0;0 10];
X1=[0 0;0 -2.5];
B2=[49.8 0;-0.127 -50];
D2=[25 0;0 25];
A2=[25 0;0 25];
B3=[49.8 0;-0.127 -50];
D3=[25 0;0 25];
A3=[25 0;0 25];
B4=[49.8 0;-0.127 -50];
D4=[25 0;0 25];
A4=[25 0;0 25];
B5=[7.5 0;0 1];
A5=[-10 0;0 0];
Y5=[2.5 0;0 0];
o=[0 0;0 0];
%M
M=[B1 D1 X1 o o;A2 B2 D2 o o;o A3 B3 D3 o;o o A4 B4 D4;o o Y5 A5 B5];
Mi=inv(M);
G=[.21;0;0;0;0;0;0;0;0;0.127];
CG=[.1;.1;.1;.1;.1;.1;.1;.1;.1;.1];
%find L
%L=[b1 o o o o;a2 b2 o o o;o a3 b3 o o;o o a4 b4 o;o o y5 a5 b5]
%U=[I -E1 -x1 o o;o I -E2 o o;o o I -E3 o;o o o I -E4;o o o o I]
n=2;
NJ=5;
w=zeros(2*NJ,1);
for j=1
L(1:(j+1),1:(j+1))=B1; %b(1)=B1
U(1:j+1,j+2:j+3)=-inv(L(1:j+1,1:j+1))*D1; %E(1)=D1*inv(-b(1))
U(1:j+1,2*j+3:2*j+4)=-inv(L(1:j+1,1:j+1))*X1; %x(1)=X1*inv(-b(1))
w(1:2)=inv(L(1:j+1,1:j+1))*G(1:2); %ksi(1) = b(1)^-1 * G(1)
end
for j=2:NJ-1
L(2*j-1:2*j,2*j-3:2*j-2)=A2; %a(2)=A2
L(2*j-1:2*j,2*j-1:2*j)=B2+L(2*j-1:2*j,2*j-3:2*j-2)*U(2*(j-1)-1:2*(j-1),2*(j-1)+1:2*(j-1)+2); %b(2)=B2+a(2)*E(1)
U(2*j-1:2*j,2*j+1:2*j+2)=-inv(L(2*j-1:2*j,2*j-1:2*j))*D2; %E(2)=-inv(b(2))*D(2)
w(2*j-1:2*j)=-inv(L(2*j-1:2*j,2*j-1:2*j))*((-G(2*j-1:2*j)+(L(2*j-1:2*j,2*j-3:2*j-2)*w((2*(j-1)-1):(2*(j-1)))))); %ksi(2)=inv(-b(2))*(-G(2)+a(2)*ksi(1))
end
for j=NJ
L(2*j-1:2*j,2*j-5:2*j-4)=Y5; %y(5)=Y5
L(2*j-1:2*j,2*j-3:2*j-2)=A5+L(2*j-1:2*j,2*j-5:2*j-4)*U(2*(j-2)-1:2*(j-2),2*(j-2)+1:2*(j-2)+2); %a(5)=A5+y(5)*E(NJ-2)
L(2*j-1:2*j,2*j-1:2*j)=B5+L(2*j-1:2*j,2*j-3:2*j-2)*U(2*(j-1)-1:2*(j-1),2*(j-1)+1:2*(j-1)+2); %b(5)=B5+a(5)*E(4)
w(2*j-1:2*j)=-inv(L(2*j-1:2*j,2*j-1:2*j))*(-G(2*j-1:2*j)+L(2*j-1:2*j,2*j-3:2*j-2)*w(2*(j-1)-1:2*(j-1))+L(2*j-1:2*j,2*j-5:2*j-4)*w(2*(j-2)-1:2*(j-2)))%-inv(b(5))*(-G(5)+a(5)*w(4)+y*(w(3))
end
%w=inv(L)*G
%C=inv(U)*w
1 Kommentar
Stephen23
am 7 Nov. 2019
Note: to make your code more efficient and robust you should probably be using mldivide instead of inv and *. Explicit matrix inversion is rarely required (because there are better methods for solving such systems of equations).
Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!