Solve systems of linear equations Ax = B for x
75 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Johan Johan
am 29 Aug. 2019
Bearbeitet: Stephen23
am 29 Aug. 2019
x = A\B solves the system of linear equations A*x = B. The matrices A and B must have the same number of rows.
But ,what is the operation between the rows?
There is any one can solve this example–manually ?
A =
1 3
4 2
b= [6 ;7];
>> A\b
ans =
0.9000
1.7000
How to find 0.9 and 1.7 exactly?
0 Kommentare
Akzeptierte Antwort
Stephen23
am 29 Aug. 2019
Bearbeitet: Stephen23
am 29 Aug. 2019
"But ,what is the operation between the rows?"
Both mldivide and mrdivide can use many different algorithms for solving systems of linear equations, as documented in the mldivide documentation. There is no single "operation" that describes all of those algorithms.
"There is any one can solve this example–manually ?"
This is easy using standard definitions for solving linear equations, e.g. elimination of variables:
System definition:
First solve the first equation for x:
Second, substitute x back into the second equation:
Third, solve that for y:
And finally try them with your example values:
>> A = [1,3;4,2]
A =
1 3
4 2
>> b = [6;7]
b =
6
7
>> A\b
ans =
0.9
1.7
>> y = (A(1,1)*b(2)-A(2,1)*b(1)) ./ (A(1,1)*A(2,2)-A(2,1)*A(1,2))
y =
1.7
>> x = (b(1)-A(1,2)*y) ./ A(1,1)
x =
0.9
0 Kommentare
Weitere Antworten (2)
KALYAN ACHARJYA
am 29 Aug. 2019
Bearbeitet: KALYAN ACHARJYA
am 29 Aug. 2019
ans =
0.9000
1.7000
How to find 0.9 and 1.7 exactly??
format shortg;
A =[1 3
4 2];
b= [6 ;7];
A\b
Result:
ans =
0.9
1.7
0 Kommentare
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!