fsolve found wrong solution for easy equation

10 Ansichten (letzte 30 Tage)
MartinM
MartinM am 22 Aug. 2019
Bearbeitet: J Chen am 23 Aug. 2019
Dear everyone, I have a stupid problem with fsolve:
my equation is :
wehre a and b are constante. I would like to solve it for z=linspace (0,20,100) (for exemple)
if z=0, the solution is x=1.
i write :
close all
clc
clear all
c=3e8;
r=30e-6;
Aeff=pi.*r.*r;
lambda0=1030e-9;
om0=2.*pi.*c./lambda0;
C0=0.;
eta=4E-1
b2=-4e-28;
b2=b2;
b3=1.5e-40;
g=sign(b2);
T0=100./om0;
Tr=10./om0;
n2=1e-23;
gamma=2.*pi.*n2./(lambda0.*Aeff);
a=8.*b3.*Tr./(15.*T0.^4);
b= 2.*eta.*b3./(3.*gamma.*T0.^2);
sol= fsolve(@(x) x*x-1+a/b*log( (b*x*x -a) / (b-a) ),0)
return
%%% I also try with solve
syms u
eqn = u.*u-1+a./b.*log( (b.*u.*u -a) ./ (b-a) )==0;% + 2b.*z
solu = solve(eqn,u)
Solution for z=0 is not found...
Why?
Thanks

Akzeptierte Antwort

Matt J
Matt J am 23 Aug. 2019
Bearbeitet: Matt J am 23 Aug. 2019
Choosing an initial guess of x=0 in fsolve is often a bad idea because the gradient of the objective will frequently be zero there (this is the case for your problem) or contain division-by-zero or log(0) operations.
In the implementation below, I've made a number of improvements including,
  1. Choosing an initial guess, x=3, away from zero.
  2. Supplying an analytical gradient calculation using SpecifyObjectiveGradient=true
  3. Using log1p() to compute your objective with higher precision
  4. Scaling the objective by 1e6 to achieve more natural units
and get correspondingly better results.
function solveit
a = 0.049032234129438;
b = 6.209226846510589e-07;
opts=optimoptions('fsolve', 'SpecifyObjectiveGradient',true);
sol=fsolve(@fun,3,opts)
function [f,df]=fun(x)
f=x^2-1+a/b*log1p( b*(x^2 -1) / (b-a) );
f=f*1e6;
df=2*x*(1+a/(b*x^2-a));
df=df*1e6;
end
end
This produces,
sol =
1.000000000000032

Weitere Antworten (1)

Matt J
Matt J am 22 Aug. 2019
Bearbeitet: Matt J am 22 Aug. 2019
fzero works better
fun=@(x) x^2-1+a/b*log( (b*x^2 -a) / (b-a) );
[sol,fval]= fzero(fun,0)
sol =
-1.000000128628277
fval =
4.488965127631997e-12
  2 Kommentare
J Chen
J Chen am 23 Aug. 2019
Bearbeitet: J Chen am 23 Aug. 2019
The function is symetric to the y-axis. It has roots at both 1 and -1. The following command finds the root at 1
[sol,val] = fzero(@(x) x*x-1+a/b*log( (b*x*x -a) / (b-a) ),0.5)
sol =
1.0000
val =
4.0381e-12
A post discusses the difference between fzero and fsolve can be found here.
Catalytic
Catalytic am 23 Aug. 2019
+1. fsolve is way overkill for a problem like this.

Melden Sie sich an, um zu kommentieren.

Produkte


Version

R2013b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by