Getting only one root for a quadratic function with mutiple variables

16 Ansichten (letzte 30 Tage)
Zee
Zee am 10 Jul. 2019
Kommentiert: John D'Errico am 10 Jul. 2019
I am facing an issue finding the parameter ‘a’ that gives the least square difference (LSD) between two function:
f(x,y,n,g,a)= ((1-exp(-g*(x*y^n))) / (1-exp(-g)))
q(x,y,n,g,a)= ((a+1-sqrt((1+a)^2-(4*a*(((1-exp(-g*(x))) / (1-exp(-g))))*( ((1-exp(-g*(y^v))) / (1-exp(-g)))))))/(2*a))
LSD(x,y,n,g,a) = (f(x,y,n,g,a)-q(x,y,n,g,a))^2
However, when I do the differentiation and set it to 0, I do not get two values of the parameter ‘a’ even that the function is quadratic. Anyone knows how to solve this issue?
The code I used:
>> syms x y n g a
f(x,y,n,g,a)= ((1-exp(-g*(x*y^n))) / (1-exp(-g)))
q(x,y,n,g,a)= ((a+1-sqrt((1+a)^2-(4*a*(((1-exp(-g*(x))) / (1-exp(-g))))*( ((1-exp(-g*(y^v))) / (1-exp(-g)))))))/(2*a))
LSD(x,y,n,g,a) = (f(x,y,n,g,a)-q(x,y,n,g,a))^2
D=diff(LSD,a)
Parameter=solve(D,a)
f(x, y, n, g, a) =
(exp(-g*x*y^n) - 1)/(exp(-g) - 1)
q(x, y, n, g, a) =
(a - ((a + 1)^2 - (4*a*(exp(-g*x) - 1)*(exp(-g*y^v) - 1))/(exp(-g) - 1)^2)^(1/2) + 1)/(2*a)
LSD(x, y, n, g, a) =
((exp(-g*x*y^n) - 1)/(exp(-g) - 1) - (a - ((a + 1)^2 - (4*a*(exp(-g*x) - 1)*(exp(-g*y^v) - 1))/(exp(-g) - 1)^2)^(1/2) + 1)/(2*a))^2
D(x, y, n, g, a) =
2*(((2*a - (4*(exp(-g*x) - 1)*(exp(-g*y^v) - 1))/(exp(-g) - 1)^2 + 2)/(2*((a + 1)^2 - (4*a*(exp(-g*x) - 1)*(exp(-g*y^v) - 1))/(exp(-g) - 1)^2)^(1/2)) - 1)/(2*a) + (a - ((a + 1)^2 - (4*a*(exp(-g*x) - 1)*(exp(-g*y^v) - 1))/(exp(-g) - 1)^2)^(1/2) + 1)/(2*a^2))*((exp(-g*x*y^n) - 1)/(exp(-g) - 1) - (a - ((a + 1)^2 - (4*a*(exp(-g*x) - 1)*(exp(-g*y^v) - 1))/(exp(-g) - 1)^2)^(1/2) + 1)/(2*a))
Warning: The solutions are valid under the following conditions: exp(g) ~= 1 & ((0 < real(n) | n == 0) & (0 < real(v) | v == 0)
| y ~= 0) & exp(g)*exp(2*g*x*y^n) + exp(g*y^v)*exp(g*x)*exp(2*g*x*y^n) + exp(g*y^v)*exp(g*x)*exp(g)*exp(g*x*y^n) ~=
exp(g*y^v)*exp(g*x)*exp(g*x*y^n) + exp(g*y^v)*exp(g)*exp(2*g*x*y^n) + exp(g*x)*exp(g)*exp(2*g*x*y^n) & (4*(exp(-g*x) -
1)*(exp(-g*y^v) - 1)*(exp(g)*exp(2*g*x*y^n) - exp(g*y^v)*exp(g*x)*exp(g*x*y^n) + exp(g*y^v)*exp(g*x)*exp(2*g*x*y^n) -
exp(g*y^v)*exp(g)*exp(2*g*x*y^n) - exp(g*x)*exp(g)*exp(2*g*x*y^n) + exp(g*y^v)*exp(g*x)*exp(g)*exp(g*x*y^n)) + (exp(-g) -
1)^2*((exp(g)*exp(2*g*x*y^n) - exp(g*y^v)*exp(g*x)*exp(g*x*y^n) + exp(g*y^v)*exp(g*x)*exp(2*g*x*y^n) -
exp(g*y^v)*exp(g)*exp(2*g*x*y^n) - exp(g*x)*exp(g)*exp(2*g*x*y^n) +
exp(g*y^v)*exp(g*x)*exp(g)*exp(g*x*y^n))/(exp(g*y^v)*exp(g*x)*exp(g) - exp(g*y^v)*exp(g*x)*exp(g*x*y^n) +
exp(g*y^v)*exp(g*x)*exp(2*g*x*y^n) - exp(g*y^v)*exp(g*x)*exp(g)*exp(g*x*y^n)) - 1)^2*(exp(g*y^v)*exp(g*x)*exp(g) -
exp(g*y^v)*exp(g*x)*exp(g*x*y^n) + exp(g*y^v)*exp(g*x)*exp(2*g*x*y^n) - exp(g*y^v)*exp(g*x)*exp(g)*exp(g*x*y^n)) ~= 0 | exp(g) +
exp(2*g*x*y^n) == exp(g*x*y^n) + exp(g)*exp(g*x*y^n)).
To include parameters and conditions in the solution, specify the 'ReturnConditions' option.
> In solve>warnIfParams (line 508)
In solve (line 357)
Parameter =
-(exp(g)*exp(2*g*x*y^n) - exp(g*y^v)*exp(g*x)*exp(g*x*y^n) + exp(g*y^v)*exp(g*x)*exp(2*g*x*y^n) - exp(g*y^v)*exp(g)*exp(2*g*x*y^n) - exp(g*x)*exp(g)*exp(2*g*x*y^n) + exp(g*y^v)*exp(g*x)*exp(g)*exp(g*x*y^n))/(exp(g*y^v)*exp(g*x)*exp(g) - exp(g*y^v)*exp(g*x)*exp(g*x*y^n) + exp(g*y^v)*exp(g*x)*exp(2*g*x*y^n) - exp(g*y^v)*exp(g*x)*exp(g)*exp(g*x*y^n))
  1 Kommentar
John D'Errico
John D'Errico am 10 Jul. 2019
A quadratic is of the form:
a1*x^2 + a2*x + a3
What you have written has square roots of functions of a in it, you divde by a.
In what mathematics is what you have written quadratic? Just because you call something a quadratic does not make it so.

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Physics finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by