Breast Density in Mammography Dicom Images
    10 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Ann G
 am 15 Mai 2019
  
    
    
    
    
    Bearbeitet: Walter Roberson
      
      
 am 27 Jul. 2024
            Is there a way to extract the breast density of a mammography through Matlab code?
1 Kommentar
Akzeptierte Antwort
  Said Pertuz
      
 am 14 Nov. 2019
        I hope is not too late an answer. Please take a look at the following tool:https://www.mathworks.com/matlabcentral/fileexchange/73360-breast-density-segmentation. 
Beware that this implementation has been tested on digital mammograms (such as those from the INbreast dataset) and has not been tested on digitized mammograms (e.g. MIAS).
Weitere Antworten (1)
  Doaa
 am 27 Jul. 2024
         
          2 Kommentare
  Doaa
 am 27 Jul. 2024
				
      Bearbeitet: Walter Roberson
      
      
 am 27 Jul. 2024
  
			% Load the mammogram image
img = imread('mammogram.jpg');
% Display the original image
figure;
imshow(img);
title('Original Mammogram Image');
% Convert the image to grayscale if it is not already
if size(img, 3) == 3
 img = rgb2gray(img);
end
% Display the grayscale image
figure;
imshow(img);
title('Grayscale Mammogram Image');
% Apply median filter to reduce noise
filtered_img = medfilt2(img);
% Display the filtered image
figure;
imshow(filtered_img);
title('Filtered Mammogram Image');
% Binarize the image using a threshold
level = graythresh(filtered_img);
bw = imbinarize(filtered_img, level);
% Display the binary image
figure;
imshow(bw);
title('Binary Mammogram Image');
% Calculate the breast density
density = sum(bw(:)) / numel(bw) * 100;
% Display the breast density
fprintf('Breast density: %.2f%%\n', density);
% Classify the breast density
if density < 25
 density_type = 'Fatty';
elseif density < 50
 density_type = 'Scattered';
elseif density < 75
 density_type = 'Heterogeneously dense';
else
 density_type = 'Extremely dense';
end
fprintf('Breast density type: %s\n', density_type);
  Doaa
 am 27 Jul. 2024
				
      Bearbeitet: Walter Roberson
      
      
 am 27 Jul. 2024
  
			% Load the mammogram image
img = imread('mammogram.jpg');
% Display the original image
figure;
imshow(img);
title('Original Mammogram Image');
% Convert the image to grayscale if it is not already
if size(img, 3) == 3
    img = rgb2gray(img);
end
% Display the grayscale image
figure;
imshow(img);
title('Grayscale Mammogram Image');
% Apply median filter to reduce noise
filtered_img = medfilt2(img);
% Display the filtered image
figure;
imshow(filtered_img);
title('Filtered Mammogram Image');
% Binarize the image using a threshold
level = graythresh(filtered_img);
bw = imbinarize(filtered_img, level);
% Display the binary image
figure;
imshow(bw);
title('Binary Mammogram Image');
% Calculate the breast density
density = sum(bw(:)) / numel(bw) * 100;
% Display the breast density
fprintf('Breast density: %.2f%%\n', density);
% Classify the breast density
if density < 25
    density_type = 'Fatty';
elseif density < 50
    density_type = 'Scattered';
elseif density < 75
    density_type = 'Heterogeneously dense';
else
    density_type = 'Extremely dense';
end
fprintf('Breast density type: %s\n', density_type);
Siehe auch
Kategorien
				Mehr zu Image Filtering and Enhancement finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



