How can I make this active snake contour more robust??
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello
I am using a ChanVese active contour from the MathWorks community. I need to make it more robust. I need it to segment only the white sharp lines from the background and not recognise any other shade of gray in an ultrasound image. This way, will help me solve the artifacts issues.
I know it's a matter of tuning some optimization parameters but I don't know which of those. Can you please help?
% Region Based Active Contour Segmentation
%
% seg = region_seg(I,init_mask,max_its,alpha,display)
%
% Inputs: I 2D image
% init_mask Initialization (1 = foreground, 0 = bg)
% max_its Number of iterations to run segmentation for
% alpha (optional) Weight of smoothing term
% higer = smoother. default = 0.2
% display (optional) displays intermediate outputs
% default = true
%
% Outputs: seg Final segmentation mask (1=fg, 0=bg)
%
% Description: This code implements the paper: "Active Contours Without
% Edges" By Chan Vese. This is a nice way to segment images whose
% foregrounds and backgrounds are statistically different and homogeneous.
%
% Example:
% img = imread('tire.tif');
% m = zeros(size(img));
% m(33:33+117,44:44+128) = 1;
% seg = region_seg(img,m,500);
%
% Coded by: Shawn Lankton (www.shawnlankton.com)
%------------------------------------------------------------------------
function seg = region_seg(I,init_mask,max_its,alpha,display)
%-- default value for parameter alpha is .1
if(~exist('alpha','var'))
alpha = .2;
end
%-- default behavior is to display intermediate outputs
if(~exist('display','var'))
display = true;
end
%-- ensures image is 2D double matrix
I = im2graydouble(I);
%-- Create a signed distance map (SDF) from mask
phi = mask2phi(init_mask);
%--main loop
for its = 1:max_its % Note: no automatic convergence test
idx = find(phi <= 1.2 & phi >= -1.2); %get the curve's narrow band
%-- find interior and exterior mean
upts = find(phi<=0); % interior points
vpts = find(phi>0); % exterior points
u = sum(I(upts))/(length(upts)+eps); % interior mean
v = sum(I(vpts))/(length(vpts)+eps); % exterior mean
F = (I(idx)-u).^2-(I(idx)-v).^2; % force from image information
curvature = get_curvature(phi,idx); % force from curvature penalty
dphidt = F./max(abs(F)) + alpha*curvature; % gradient descent to minimize energy
%-- maintain the CFL condition
dt = .45/(max(dphidt)+eps);
%-- evolve the curve
phi(idx) = phi(idx) + dt.*dphidt;
%-- Keep SDF smooth
phi = sussman(phi, .5);
%-- intermediate output
if((display>0)&&(mod(its,20) == 0))
showCurveAndPhi(I,phi,its);
end
end
%-- final output
if(display)
showCurveAndPhi(I,phi,its);
end
%-- make mask from SDF
seg = phi<=0; %-- Get mask from levelset
%---------------------------------------------------------------------
%---------------------------------------------------------------------
%-- AUXILIARY FUNCTIONS ----------------------------------------------
%---------------------------------------------------------------------
%---------------------------------------------------------------------
%-- Displays the image with curve superimposed
function showCurveAndPhi(I, phi, i)
imshow(I,'initialmagnification',200,'displayrange',[0 255]); hold on;
contour(phi, [0 0], 'g','LineWidth',2);
hold off; title([num2str(i) ' Iterations']); drawnow;
%-- converts a mask to a SDF
function phi = mask2phi(init_a)
phi=bwdist(init_a)-bwdist(1-init_a)+im2double(init_a)-.5;
%-- compute curvature along SDF
function curvature = get_curvature(phi,idx)
[dimy, dimx] = size(phi);
[y x] = ind2sub([dimy,dimx],idx); % get subscripts
%-- get subscripts of neighbors
ym1 = y-1; xm1 = x-1; yp1 = y+1; xp1 = x+1;
%-- bounds checking
ym1(ym1<1) = 1; xm1(xm1<1) = 1;
yp1(yp1>dimy)=dimy; xp1(xp1>dimx) = dimx;
%-- get indexes for 8 neighbors
idup = sub2ind(size(phi),yp1,x);
iddn = sub2ind(size(phi),ym1,x);
idlt = sub2ind(size(phi),y,xm1);
idrt = sub2ind(size(phi),y,xp1);
idul = sub2ind(size(phi),yp1,xm1);
idur = sub2ind(size(phi),yp1,xp1);
iddl = sub2ind(size(phi),ym1,xm1);
iddr = sub2ind(size(phi),ym1,xp1);
%-- get central derivatives of SDF at x,y
phi_x = -phi(idlt)+phi(idrt);
phi_y = -phi(iddn)+phi(idup);
phi_xx = phi(idlt)-2*phi(idx)+phi(idrt);
phi_yy = phi(iddn)-2*phi(idx)+phi(idup);
phi_xy = -0.25*phi(iddl)-0.25*phi(idur)...
+0.25*phi(iddr)+0.25*phi(idul);
phi_x2 = phi_x.^2;
phi_y2 = phi_y.^2;
%-- compute curvature (Kappa)
curvature = ((phi_x2.*phi_yy + phi_y2.*phi_xx - 2*phi_x.*phi_y.*phi_xy)./...
(phi_x2 + phi_y2 +eps).^(3/2)).*(phi_x2 + phi_y2).^(1/2);
%-- Converts image to one channel (grayscale) double
function img = im2graydouble(img)
[dimy, dimx, c] = size(img);
if(isfloat(img)) % image is a double
if(c==3)
img = rgb2gray(uint8(img));
end
else % image is a int
if(c==3)
img = rgb2gray(img);
end
img = double(img);
end
%-- level set re-initialization by the sussman method
function D = sussman(D, dt)
% forward/backward differences
a = D - shiftR(D); % backward
b = shiftL(D) - D; % forward
c = D - shiftD(D); % backward
d = shiftU(D) - D; % forward
a_p = a; a_n = a; % a+ and a-
b_p = b; b_n = b;
c_p = c; c_n = c;
d_p = d; d_n = d;
a_p(a < 0) = 0;
a_n(a > 0) = 0;
b_p(b < 0) = 0;
b_n(b > 0) = 0;
c_p(c < 0) = 0;
c_n(c > 0) = 0;
d_p(d < 0) = 0;
d_n(d > 0) = 0;
dD = zeros(size(D));
D_neg_ind = find(D < 0);
D_pos_ind = find(D > 0);
dD(D_pos_ind) = sqrt(max(a_p(D_pos_ind).^2, b_n(D_pos_ind).^2) ...
+ max(c_p(D_pos_ind).^2, d_n(D_pos_ind).^2)) - 1;
dD(D_neg_ind) = sqrt(max(a_n(D_neg_ind).^2, b_p(D_neg_ind).^2) ...
+ max(c_n(D_neg_ind).^2, d_p(D_neg_ind).^2)) - 1;
D = D - dt .* sussman_sign(D) .* dD;
%-- whole matrix derivatives
function shift = shiftD(M)
shift = shiftR(M')';
function shift = shiftL(M)
shift = [ M(:,2:size(M,2)) M(:,size(M,2)) ];
function shift = shiftR(M)
shift = [ M(:,1) M(:,1:size(M,2)-1) ];
function shift = shiftU(M)
shift = shiftL(M')';
function S = sussman_sign(D)
S = D ./ sqrt(D.^2 + 1);
active
5 Kommentare
Jan
am 17 Mai 2019
@Stelios: As fas as I can see, none of your many questions contained enough information to be answered. You have ignored many questions for clarifications and it seems like you ignore the explanations given as answers. I assume, many contributors of this forum do not care about your questions anymore, because it was not possible to help you in the past. This would mean, that the forum is simply not a suitable place for you to learn Matlab.
In this case that vague expression "more robust" is not clear enought and you should explain statements like "I know it's a matter of tuning some optimization parameters" with any details.
I has been suggested to you to read How to ask a good question, but as far as I remember you did not react to this useful advice yet.
It is my opinion, that if the participation in a forum does not help you to learn Matlab, it is the best strategy to try it somewhere else.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Biomedical Imaging finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!