Compute an Orthogonal Matrix
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi All,
I need your help. Is there any solution in Matlab to compute an orthogonal matrix if the first coulomn of the orthogonal matrix is known.
For example, I want to find an orthonal matrix for matrix A,
A = [1 0 0 0 -1 0;-1 1 0 0 0 0;0 -1 1 0 0 0;0 0 -1 1 0 0;0 0 0 -1 1 0;0 0 0 0 -1 1];
U*A*inv(U) = B
U is an orthogonal matrix with the first coulomn of U being [1;1;1;1;1;1] .
B is a diagonal matrix with all eigenvalues of A on the diagonal.
Thank you very much for your help
5 Kommentare
Matt J
am 15 Apr. 2019
U is an orthogonal matrix with the first coulomn of U being [1;1;1;1;1;1] .
The norm of the columns (and the rows) of an orthogonal matrix must be one. So, a column of 1's is impossible. Maybe you mean that the column should be [1;1;1;1;1;1] /sqrt(6).
David Goodmanson
am 15 Apr. 2019
Bearbeitet: David Goodmanson
am 15 Apr. 2019
Hi Matt / namo
yes that's true, thanks for pointing it out.
In the specific case of the modified A, there is a U of the right form, but I had not noticed before that it is still not quite right because
U'*A*U = B
whereas the question wanted
U*A*U' = B
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!