SVM、特徴ベクトル 

15 Ansichten (letzte 30 Tage)
Yoshihiko Kuwabara
Yoshihiko Kuwabara am 22 Feb. 2019
Beantwortet: Kenta am 22 Feb. 2019
バイナリ分類のサポートベクターマシンの学習データ(特徴ベクトル)についてお尋ねします。
ドキュメンテーションでは2次元(平面)でのfitcsvmやpredictの使い方が解説されています。
これを3次元や4次元の特徴ベクトルに拡張するためには、fitcsvmのベクトルXを3列(4列)にすればよいのでしょうか?
また,この場合の分離空間の表示の例がありましたら御教示ください。

Akzeptierte Antwort

Kenta
Kenta am 22 Feb. 2019
したのコードにあるように、3列にすればできます。
分離平面の例としては、下のようなものがありました。一度試してみてください。
load fisheriris
X = meas(:,1:3);
y = ones(size(X,1),1);
SVMModel = fitcsvm(X,y,'KernelScale','auto','Standardize',true,...
'OutlierFraction',0.05);

Weitere Antworten (0)

Kategorien

Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange

Produkte


Version

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!