SVM、特徴ベクトル
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Yoshihiko Kuwabara
am 22 Feb. 2019
Beantwortet: Kenta
am 22 Feb. 2019
バイナリ分類のサポートベクターマシンの学習データ(特徴ベクトル)についてお尋ねします。
ドキュメンテーションでは2次元(平面)でのfitcsvmやpredictの使い方が解説されています。
これを3次元や4次元の特徴ベクトルに拡張するためには、fitcsvmのベクトルXを3列(4列)にすればよいのでしょうか?
また,この場合の分離空間の表示の例がありましたら御教示ください。
0 Kommentare
Akzeptierte Antwort
Kenta
am 22 Feb. 2019
したのコードにあるように、3列にすればできます。
分離平面の例としては、下のようなものがありました。一度試してみてください。
load fisheriris
X = meas(:,1:3);
y = ones(size(X,1),1);
SVMModel = fitcsvm(X,y,'KernelScale','auto','Standardize',true,...
'OutlierFraction',0.05);
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!