What is the minimum slope of y=x^3-9*x^2+15*x? matlab code

1 Ansicht (letzte 30 Tage)
Busra Tabak
Busra Tabak am 16 Dez. 2018
Kommentiert: Image Analyst am 16 Dez. 2018
What is the minimum slope of y=x^3-9*x^2+15*x?
  2 Kommentare
madhan ravi
madhan ravi am 16 Dez. 2018
what have you tried so far?
Busra Tabak
Busra Tabak am 16 Dez. 2018
syms x
f=x^3-9*x^2+15*x;
fprime=diff(f,x);
fdprime=diff(fprime,x);
xstar=double(solve(fprime==0,x));
xstar=unique(xstar);
for i=1:numel(xstar)
if subs(fdprime,x,xstar(i))>0
disp('min')
double(subs(f,x,xstar(i)))
end
end
I wrote this code and got this solution. Is it correct?
min
ans =
-25

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Image Analyst
Image Analyst am 16 Dez. 2018
Hint:
slope = 3 * x .^ 2 - 18 * x + 15; % Derivative.
minSlope = min(slope)
minAbsSlope = min(abs(slope))
Plot it, using linspace() for x, and see what you see. Of course since it's a parabola, the min absolute value of the slope will be zero and the min slope will depend on how far negative you want to evaluate x. For x that is more negative, the slope will be steeper.
  2 Kommentare
Busra Tabak
Busra Tabak am 16 Dez. 2018
I do not understand and I can not write the code. Did you find -25 as answer?
Image Analyst
Image Analyst am 16 Dez. 2018
No, of course not. Did you just plot the function and see it? Nowhere does it turn downwards and have a negative slope:
x = linspace(-50, 50, 100000);
y = x.^3-9*x.^2+15*x;
subplot(2, 1, 1);
plot(x, y, 'b-')
grid on;
fontSize = 20;
title('y = x .^ 3 - 9 * x .^ 2 + 15 * x', 'FontSize', fontSize, 'Interpreter', 'none');
xlabel('x', 'FontSize', fontSize, 'Interpreter', 'none');
ylabel('y', 'FontSize', fontSize, 'Interpreter', 'none');
slope = 3 * x .^ 2 - 18 * x + 15; % Derivative.
minSlope = min(slope)
minAbsSlope = min(abs(slope))
subplot(2, 1, 2);
plot(x, slope, 'b-')
xlabel('x', 'FontSize', fontSize, 'Interpreter', 'none');
ylabel('Slope of y', 'FontSize', fontSize, 'Interpreter', 'none');
title('slope = 3 * x .^ 2 - 18 * x + 15', 'FontSize', fontSize, 'Interpreter', 'none');
grid on;
0000 Screenshot.png
It's a parabola so what do you think the min absolute slope would be? And don't you see and understand that the min slope (most negative) will depend on how far out into the negative x territory you want to go?

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by