for the same answer,,suppose, X ranges from 1 to 500, y ranges from 1 to 200 , Is it possible to find how many such coordinates are possible so that distance from each and every coordinate to other coordinate is > 20
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
M.Prasanna kumar
am 14 Dez. 2018
Bearbeitet: Image Analyst
am 14 Dez. 2018
BWremain = true(300);
% Number of random coordinates
N = 100;
% Selected coordinates are stored these variables
row = nan(N,1);
col = nan(N,1);
for kk = 1:N
BW = false(300);
p = find(BWremain);
p = p(randperm(numel(p),1));
BW(p) = true;
BW = bwdist(BW) > 20;
BWremain = BWremain & BW;
[row(kk),col(kk)] = ind2sub(size(BWremain),p)
end
2 Kommentare
KSSV
am 14 Dez. 2018
How it is different from this question? https://in.mathworks.com/matlabcentral/answers/435673-i-want-x-y-coordinates-which-are-randomly-generated-between-1-to-300-condition-is-distance-between
Akzeptierte Antwort
Image Analyst
am 14 Dez. 2018
Bearbeitet: Image Analyst
am 14 Dez. 2018
The max number varies depending on what points were actually placed. Using numbers from your question, and trying a million coordinates, we can see that we can place from about 150 to 200 points. See code below:
pointsToPlace = 5000000 ; % # of random coordinates we need to place - some huge number
% Preallocate points
x = zeros(1, pointsToPlace);
y = zeros(1, pointsToPlace);
loopCounter = 1;
maxIterations = 1000000; % Number of tries before giving up.
numberPlaced = 0; % No points placed yet.
while numberPlaced < pointsToPlace && loopCounter <= maxIterations
% Get new coordinate
xProposed = 1 + (500-1)*rand(); %% random X- coordinates
yProposed = 1 + (200-1)*rand(); %% random Y- coordinates
if loopCounter == 1
% First one automatically gets added of course.
numberPlaced = 1;
x(numberPlaced) = xProposed;
y(numberPlaced) = yProposed;
else
% Compute distance to all prior coordinates.
distances = sqrt((xProposed - x(1:numberPlaced)) .^ 2 + (yProposed - y(1:numberPlaced)) .^2);
% If less than 20, add it
if min(distances > 20)
numberPlaced = numberPlaced + 1;
x(numberPlaced) = xProposed;
y(numberPlaced) = yProposed;
end
end
loopCounter = loopCounter + 1;
end
% Crop to how many we actually got.
x = x(1:numberPlaced);
y = y(1:numberPlaced);
fprintf('Placed %d points after %d iterations\n', numberPlaced, loopCounter-1);
plot(x, y, 'b*', 'LineWidth', 2, 'MarkerSize', 14);
grid on;
axis equal
xlim([0, 500]);
ylim([0, 200]);
xlabel('X', 'FontSize', 20);
ylabel('Y', 'FontSize', 20);
I'm not aware of an analytical statistical answer, so above we solve it numerically.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!