for loop to matrix calculation
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello there,
I do not know how to optimize this calculation. It is very slow, since vector "my_vector" is made of 3 millions indeces.
I would like to perform the same calculation using matrices, but I really do not know how to do it!
Thank you!
Have a good one,
Andrea.
corr = zeros(1,n_A*p_A-1); % row vector of 3762799
v = residual(my_vector);
variance = mean(v.^2);
index_corr = 0;
ref_length = 0;
for l = 1:(n_A*p_A-1)
for j = 1:(n_A*p_A-l)
corr(1,l) = corr(1,l)+v(1,j)*v(1,j+l);
end
corr(1,l) = corr(1,l)/((n_A*p_A-l)*variance);
if (corr(1,l) < (1/exp(1)))
if index_corr == 0
ref_length = l;
end
index_corr = 1;
end
end
1 Kommentar
Jan
am 3 Dez. 2018
Bearbeitet: Jan
am 3 Dez. 2018
It would be useful if you explain, what the code should do. Some meaningful comments in the code are required also to improve its quality. Please provide some meaningful inputs also, because this is more efficient than letting the readers guess the inputs.
Akzeptierte Antwort
Jan
am 3 Dez. 2018
Bearbeitet: Jan
am 3 Dez. 2018
1/exp(1) is a very expensive calculation. Do this once before the loop.
The index "l" (lowercase L) looks like a "1", so I replaced it by "k".
corr = zeros(1, n_A*p_A-1); % row vector of 3762799
v = residual(my_vector);
variance = mean(v .^ 2);
index_corr = 0;
ref_length = 0;
c = 1 / exp(1);
for k = 1:(n_A*p_A-1)
n = n_A * p_A - k;
% Use DOT product to calculate the sum:
corr(1, k) = corr(1, k) + v(1, 1:n) * v(1, (1 + k):(n + k)).';
% Alternative - assumed to be slower:
% corr(1, k) = corr(1, k) + sum(v(1, 1:n) .* v(1, (1 + k):(n + k)));
corr(1, k) = corr(1,k) / ((n_A*p_A-k) * variance);
if corr(1,k) < c
if index_corr == 0
ref_length = k;
end
index_corr = 1;
end
end
3 Kommentare
Jan
am 4 Dez. 2018
@Andrea: Unfortunately I cannot run your code, because you did not provide the input arguments. Then you have to debug the code by your own. Perhaps one of the inputs is a column vector? Try this:
...
v = V(:).';
for k = 1:(n_A*p_A-1)
n = n_A * p_A - k;
corr(k) = corr(k) + v(1:n) * v((1 + k):(n + k)).';
corr(k) = corr(k) / ((n_A*p_A-k) * variance);
if corr(k) < c
if index_corr == 0
ref_length = k;
end
index_corr = 1;
end
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!